
Theoretical Informatics and Applications Will be set by the publisher
Informatique Théorique et Applications

EFFICIENT GENERATION OF SOME GREEDY BINARY
GRAY CODES

Nathanaël Hassler1, Vincent Vajnovszki2 and Dennis
Wong3

Abstract. In 2013, Aaron Williams introduced the notion of a greedy
Gray code algorithm and reinterpreted known Gray codes in a unified
manner using greedy algorithms. Recently, this notion was further
generalized and investigated by Merino, Mütze, and Williams in 2022,
and by Merino and Mütze in 2024, in the context of generating the bases
of a matroid or the spanning trees of a graph, among other combintorial
structures.

In this article, we investigate the existence of homogeneous greedy
Gray codes for Fibonacci words and generalized Dyck prefixes. We also
establish useful properties and provide efficient generation algorithms
for them.

2020 Mathematics Subject Classification. 05A05, 05A10, 68R15.

1. Introduction

A Gray code for a class of combinatorial objects is a list that contains each
object from the class exactly once, such that any two consecutive objects in the
list differ only in a predefined “small” way. In [9], Aaron Williams introduced
the notion of a greedy Gray code algorithm and reinterpreted known Gray codes
in a unified way using the framework of greedy algorithms. He mentions that
the greedy method is not suitable for efficiently generating Gray codes, as it may
require storing an exponential number of objects. This notion was subsequently
extended and studied in the context of various combinatorial objects in [4, 5].

Based on Williams’ original greedy algorithm, the authors of the present paper
provided in [3] Gray codes and corresponding generation algorithms for several
classes of constrained binary words: Fibonacci words, (generalized) Dyck words,

1 LIB, Université de Bourgogne Europe, Dijon, France, nathanael.hassler@ens-rennes.fr
2 LIB, Université de Bourgogne Europe, Dijon, France, vvajnov@u-bourgogne.fr
3 Polytechnic University Macao, China, cwong@uoguelph.ca

© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

and their prefixes. In the present article, depending on the choice of the first
element in the code, we investigate the existence of homogeneous greedy Gray
codes for these classes. Moreover, we show that the resulting codes possess useful
properties, enabling the development of efficient generation algorithms.

1.1. Constrained binary words

1.1.1. 1s run constrained binary words

Let n, p ∈ N, p ≥ 2, and Fp(n) be the set of length n binary words with no p
consecutive 1s. We also set Fp =

∪
n Fp(n). F2(n) is counted by the Fibonacci

numbers fn, and in general, Fp(n) is counted by the p-order Fibonacci numbers
f
(p)
n . Now let k ∈ N, and Fp(n, k) be the subset of words in Fp(n) of weight k (i.e.,

with exactly k 1s). Fp(n, k) is counted by the univariate p-nomial coefficient:

|Fp(n, k)| =
(
n− k + 1

k

)
p

(1)

where
(
m
j

)
p

for 0 ≤ j ≤ (p− 1)m is the coefficient of xj in the polynomial (1+x+

. . .+ xp−1)m:

(1 + x+ . . .+ xp−1)m =

(p−1)m∑
j=0

(
m

j

)
p

xj . (2)

Remark 1.1.
(
m
j

)
p

also counts the number of compositions of j into m parts,
where each part belongs to {0, . . . , p− 1}.

Note that when p = 2, we get the usual binomial coefficient,
(
m
j

)
2
=

(
m
j

)
. Since

Fp(n, k) for 0 ≤ k ≤ n is a partition of Fp(n), we get the following formula:

f (p)
n =

n∑
k=0

(
n− k + 1

k

)
p

. (3)

1.1.2. Prefix constrained binary words

Let k, n, p ∈ N with (p + 1)k ≤ n, and Cp(n, k) be the set of length n binary
words of weight k with the property that any prefix contains at least p times as
many 0s as 1s. Further, let Cp =

∪
n,k Cp(n, k). In particular:

• C0(n, k) is the set of length n binary words of weight k (combinations in
binary word representation),

• C1(2n, n) is the set of length 2n Dyck words, and it is counted by the
Catalan numbers

(
2n
n

)
−
(

2n
n−1

)
= 1

n+1

(
2n
n

)
,

• C2(3n, n) is in bijection with size 3n ternary trees (see A001764 in OEIS).

TITLE WILL BE SET BY THE PUBLISHER 3

More generally, Cp((p+1)n, n) is counted by 1
pn+1

(
(p+1)n

n

)
, known as the Pfaff–

Fuss–Catalan numbers, and the cardinality of Cp(n, k) is established for instance
in [8, Equation (2)], using generating functions:

|Cp(n, k)| =
(
n

k

)
− p

(
n

k − 1

)
. (4)

1.2. Gray codes and greedy algorithms

As mentioned in Introduction, our Gray codes for binary words are based on
the initial work in [9], which has been further developed recently in [4, 5]. The
greedy algorithm in Definition 1 below, introduced originally in [4, 5] (where it is
referred to as Algorithm G), aims to minimize the length of the changed prefix in
the transition from one word to the next in a Gray code for a set of binary words.
Definition 1. Algorithm G that attempts to greedily compute L, a Gray code
for the set of binary words S.

(1) Initialize L with a particular word in S.
(2) Consider the set N of words in S but not in L that differ from the last

word in L in the predefined “small” way that characterizes the Gray code.
(3) If the set N from step (2) is not empty, choose a word y ∈ N such that

the length of the changed prefix in the transition from the last word in L
to y is minimized. Then append y to L, and return to step (2).
Otherwise, terminate the algorithm.

Seemingly, there is a lack of accuracy in point 3 of the previous definition:
‘choose a word y’ (called tie-breaking rule in [4, 5]) could mean either drawing
at random or selecting according to a specified rule; we will adopt the latter
interpretation in the algorithm in Definition 2 below.

A list of words is said to be suffix-partitioned if all words sharing the same
suffix appear consecutively in the list. This property is also referred to in the
literature as having the genlex property. In [5, Theorem 5], a powerful result is
stated: if a Gray code L for a set of binary words is prefix-partitioned, then it can
be generated by Algorithm G, equipped with a specific rule (depending on L) for
choosing y ∈ N in step (3).

In this paper we restrict ourselves to Gray codes for restricted classes of same
length and same weight binary words (the weight of a binary word is its number of
1s). The “small” changes we consider here are homogeneous transpositions: two
binary words differ by a homogeneous transposition if one can be obtained from
the other by transposing a 1 with a 0, and there are no 1s between the transposed
bits. A Gray code is called homogeneous if consecutive words differ in a such a
way.

Let S be a set of binary words of the same length and same weight, and let L
be a list of words from a subset of S. Let also H(S,L) denote the set of all pairs
(u, v), with u > v, such that the transposition of the bits at positions u and v in the
last word of L is homogeneous and yields a word that belongs to S but not to L.

4 TITLE WILL BE SET BY THE PUBLISHER

Defining Gray codes, it is reasonable to maximize the length of the common suffix
of consecutive words, and the following algorithm is both a specialization of the
one in Definition 1 to homogeneous transpositions and achieved by minimizing the
largest transposed position, and a generalization of the algorithm Ghom from [4]
to classes of binary words beyond combinations.

Definition 2. Specialization of the algorithm in Definition 1.
(1) Initialize L with a particular word in S.
(2) Consider the set H(S,L) defined above of possible homogeneous transpo-

sitions.
(3) If H(S,L) from step (2) is not empty, consider (u, v), the lexicographi-

cally smallest pair in H(S,L). Then append to L the word obtained by
transposing the bits at positions u and v in the last word of L, and return
to step (2).
Otherwise, terminate the algorithm.

Note that the Gray codes defined later in this paper are purely based on this
algorithm (which by a slight abuse of language, will be referred to it as the ho-
mogeneous greedy algorithm). Except for a few rare cases (see the next remark),
alternative and more classical definitions for the lists produced by this algorithm
remain to be established. In this algorithm, the choice of the initial word is critical.

Example 1.2. Let S be the set C0(4, 2) (the set of length four binary words with
two 1s), then the homogeneous greedy algorithm for C0(4, 2), starting with

(i) 1001 produces the list 1001, 0101, 0011;
(ii) 0110 produces the list 0110, 1010, 1100 1001, 0101, 0011;
(iii) 0011 produces the list 0011, 1001, 0101, 0110, 1010, 1100.
It is worth noting that the list in (i) is not exhaustive for S, and that the first

word in the list in (iii) is the same as the last word in the list in (ii); however, the
two lists are not reverses of each other. See also the examples in Table 1.

Remark 1.3.
• When p = 0, k is odd and the initial word is 1k0n−k, the homogeneous

greedy algorithm for C0(n, k) produces Eades-McKay’s Gray code, see
[2, 9].

• Experimental evidences suggests that when p = 1, n = 2k and the initial
word is (01)k, the homogeneous greedy algorithm for the set C1(n, k) pro-
duces Bultena-Ruskey’s Gray code, see [1]. See Table 1 (b) for this Gray
code when p = 1 and k = 4.

The easy-to-understand Proposition 1.4 hereafter, which we will need later,
requires a few technical definitions. The tail of a binary word is its longest suffix
of the form 011 · · · 1, and the only words with no tail have the form 11 · · · 1. A
list of binary words is increasing (resp. decreasing) tail-partitioned if words with
tails of length ℓ appear before (resp. after) words with tail of length ℓ+1, for any
ℓ ≥ 1.

TITLE WILL BE SET BY THE PUBLISHER 5

Definition 3. A list L of same length binary words is recursive tail-partitioned if
• it is increasing or decreasing tail-partitioned, and
• for any tail t, the list obtained by: (i) considering the sublist of L of words

with tail t, then (ii) erasing the tail t in each word of this sublist, is in
turn recursive tail-partitioned.

In the following · denotes the concatenation (of two words, or of each word in
a list with a word) and the comma appends lists.

With this notation, L is a recursive tail-partitioned list if it has the form

L = L1 · 01u1 ,L2 · 01u2 , · · · ,Lℓ · 01uℓ (5)
for some increasing or decreasing consecutive integers u1, u2, . . . , uℓ, and each list
Li is in turn recursive tail-partitioned.

Recall that a list of words is suffix-partitioned if the words with the same suffix
are consecutively in the list. Clearly, a recursive tail-partitioned list (r-t partitioned
list for short) is a suffix-partitioned list.

Proposition 1.4. If the list L is a homogeneous and suffix-partitioned Gray code
for a set of same length and same weight binary words, then L is an r-t partitioned
list.

Proof. Since L is suffix-partitioned, all the words with same tail t form a contiguous
sublist in L. But since we allow only homogeneous transpositions, if t and s are
two tails such that the t-tail sublist and the s-tail sublist are consecutive in L, then
t and s only differ by one 1. Hence L is increasing or decreasing tail-partitioned,
so it can be written as in relation (5) for some u1, u2, . . . , uℓ, and lists Li. Now,
each Li satisfies the same hypotheses as L. Indeed, since L is a homogeneous and
suffix-partitioned Gray code for same length and same weight binary words, so are
the Lis. Thus, recursively we get that L is r-t partitioned. □

2. Characterization of the first and the last words in
the Gray code

In this section, we show that for any α ∈ F2(n, k) (resp. α ∈ Cp(n, k)), applying
the homogeneous greedy algorithm (given in Definition 2) for F2(n, k) (resp. for
Cp(n, k)) starting from α yields a suffix-partitioned list. Moreover, for each α,
we characterize the last word in the obtained list and identify those words α
(called generators) for which the algorithm exhaustively produces F2(n, k) (resp.
Cp(n, k)). In particular, Propositions 2.5 and 2.9 state that, with an appropriate
choice of the initial word (a generator), this algorithm produces homogeneous Gray
codes for F2(n, k) and Cp(n, k).

2.1. Fibonacci words F2(n, k)

For n < 2k − 1, F2(n, k) is empty and in two particular cases F2(n, k) is a
singleton set.

6 TITLE WILL BE SET BY THE PUBLISHER

Fact 2.1. If k = 0, then F2(n, k) = {0n}, and if n = 2k − 1, then F2(n, k) =
{1(01)k−1}.

For α ∈ F2(n, k) we denote by G(α, F2) the list obtained by applying the
homogeneous greedy algorithm for F2 starting with α. For instance, the list
G(0101000, F2) is given in Table 1 (a).

For n, k with n ≥ 2k, we define
• αi

n,k := 0i1(01)k−10n−2k+1−i, for 0 ≤ i ≤ n− 2k + 1, and
• γn,k := αn−2k+1

n,k = 0n−2k(01)k.
Furthermore, let F(n, k) denote the set of generators, that is, words α ∈ F2(n, k)
for which G(α, F2) contains every word of F2(n, k).

Theorem 2.2. Let n ∈ N⋆. Then for all k with n ≥ 2k, we have
(1) αi

n,k ∈ F(n, k) for all 0 ≤ i ≤ n− 2k, and G(α, F2) is a suffix-partitioned
list, with γn,k as last word.

(2) γn,k ∈ F(n, k), and G(α, F2) is a suffix-partitioned list and its last word is
(i) α0

n,k if k is even,
(ii) αn−2k

n,k if k is odd.

Proof. The statement is trivially true if n = 1, 2 or k = 0, and we proceed by
induction on n. For n ∈ N⋆, let (Pn) be the following statement: ‘for all k,
0 < k ≤ ⌊n2 ⌋, points 1 and 2 of the present theorem hold’. Let n ≥ 3 and suppose
that (Pm) holds for all m < n. Let 0 < k ≤ ⌊n2 ⌋.

(1) Let 0 ≤ i ≤ n−2k. We have αi
n,k = αi

n−1,k ·0 Let us first assume that i ̸=
n− 2k, so that αi

n−1,k ̸= γn−1,k. Then, by definition of the homogeneous
greedy algorithm (it first changes the leftmost bits), G(αi

n,k, F2) starts
with G(αi

n−1,k, F2) · 0. By the induction hypothesis, the last word of
G(αi

n−1,k, F2) ·0 is γn−1,k, so the next word in G(αi
n,k, F2) is αi

n−2,k−1 ·01.
Again using the definition of the homogeneous greedy algorithm, we have
G(αi

n,k, F2) = G(αi
n−1,k, F2) · 0, G(αi

n−2,k−1, F2) · 01. By the induction
hypothesis, G(αi

n,k, F2) is exhaustive because F2(n, k) = F2(n− 1, k) · 0 ⊔
F2(n− 2, k − 1) · 01, it is suffix-partitioned and its last word is γn,k. Now
if i = n− 2k, we have αi

n,k = γn−1,k · 0. Similarly, G(αi
n,k, F2) starts with

G(γn−1,k, F2) · 0. Then we have two possibilities.
(i) If k is even, by the induction hypothesis we have G(αi

n,k, F2) =

G(γn−1,k, F2) · 0, G(α0
n−2,k−1, F2) · 01 and we can conclude as before.

(ii) If k is odd, then we have G(αi
n,k, F2) = G(γn−1,k, F2)·0, G(αn−2k

n−2,k−1, F2)·
01 and we conclude similarly.

(2) We have γn,k = γn−2,k−1 · 01.
(i) If k − 1 is even, then k is odd. By the induction hypothesis, we have

G(γn,k, F2) = G(γn−2,k−1, F2) ·01, G(α0
n−1,k, F2) ·0. The last word of

G(γn,k, F2) is αn−2k
n,k , and we can conclude.

(ii) If k − 1 is odd, then k is even. By the induction hypothesis, we have

TITLE WILL BE SET BY THE PUBLISHER 7

G(γn,k, F2) = G(γn−2,k−1, F2) · 01, G(γn−1,k, F2) · 0. The last word of
G(γn,k, F2) is α0

n,k, and we can conclude.
□

In the next lemma, we extend the result of (1) in Theorem 2.2 about the last
element of G(α, F2) to each α ∈ F2(n, k).
Lemma 2.3. Let n ≥ 2k. For any α ∈ F2(n, k) with α ̸= γn,k, the last word of
G(α, F2) is γn,k.
Proof. Let α ∈ F2(n, k) with α ̸= γn,k. If γn,k appears in G(α, F2), then it has a
predecessor. By the homogeneous greedy algorithm, this predecessor has the form
0i10n−2k+1−i(01)k−1 with 0 ≤ i ≤ n − 2k, and each word with the suffix (01)k−1

has appeared before in the listing. Thus, if γn,k is in G(α, F2), then it is the last
word. Now we prove that γn,k appears in G(α, F2). Let j be the greatest integer
such that there exists a word with suffix (01)j in G(α, F2), and let β be the last
word with suffix (01)j in G(α, F2), so β has suffix 0(01)j . Then we have either
that β is the last word, or its successor has suffix 0(01)j−1. In both cases, by
the homogeneous greedy algorithm, every word with suffix (01)j+1 has appeared
before in G(α, F2), which is a contradiction with the definition of j, unless j = k.
Thus, γn,k does appear in G(α, F2). □

Now we generalize the property for G(α, F2) to be suffix-partitioned to each
word of F2(n, k).
Lemma 2.4. Let n ≥ 2k−1. For any α ∈ F2(n, k), G(α, F2) is a suffix-partitioned
list.
Proof. We proceed by induction on n. This is easy to check for n = 1, 2, 3. Let
n ≥ 4 and assume that for m ∈ {n−1, n−2} we have G(α, F2) is suffix-partitioned
for any α ∈ F2(m, k) with m ≥ 2k − 1. Let k be such that n ≥ 2k − 1 and
α ∈ F2(n, k).

• If the last bit of α is 0, then α = α′ · 0 with α′ ∈ F2(n− 1, k). If α = αi
n,k

for some 0 ≤ i ≤ n − 2k + 1, then we can conclude by Theorem 2.2.
Otherwise, we can assume α′ ̸= γn−1,k, so by the homogeneous greedy
algorithm and Lemma 2.3, G(α, F2) = G(α′, F2) · 0, G(γn−2,k−1, F2) · 01.
By the induction hypothesis, G(α, F2) is suffix-partitioned.

• If the last bit of α is 1, then α = α′·01 with α′ ∈ F2(n−2, k−1). Once again
if α = γn,k we can conclude by Theorem 2.2, otherwise α′ ̸= γn−2,k−1.
Thus, by the homogeneous greedy algorithm and Lemma 2.3 (applied to
α and α′), G(α, F2) = G(α′, F2) · 01. So by the induction hypothesis,
G(α, F2) is suffix-partitioned.

□
Now we are able to describe exactly the set F(n, k) of generators of F (n, k).

Proposition 2.5. Let n ≥ 2k − 1. Then

F(n, k) = {0i1(01)k−10n−2k+1−i | 0 ≤ i ≤ n− 2k + 1}.

8 TITLE WILL BE SET BY THE PUBLISHER

In particular, |F(n, k)| = n− 2k + 2.

Proof. The inclusion from right to left has been established in Theorem 2.2. Let
α ∈ F(n, k). Suppose that the last bit of α is 1, then α has the suffix 01. By
Lemma 2.3, if α ̸= γn,k, then γn,k is the last word of G(α, F2). By Lemma
2.4, this means that every word of G(α, F2) has suffix 01. So the only possible
element of F(n, k) with last bit 1 is γn,k. Now suppose that the last bit of α is
0. Then α = α′ · 0 and by the homogeneous greedy algorithm and Lemma 2.4,
G(α′, F2) · 0 must contain every word of F2(n, k) ending with a 0. We conclude
that α′ ∈ F(n− 1, k). Then we have either the last bit of α′ is 1, and α′ = γn−1,k,
or α′ = α′′ ·0 with α′′ ∈ F(n−2, k). By iterating this process we get that α = αi

n,k

for some 0 ≤ i ≤ n− 2k + 1, hence the result. □

2.2. Cp(n, k)

For n, p, k such that n ≥ (p + 1)k and α ∈ Cp(n, k), we denote by G(α,Cp)
the list obtained by applying the homogeneous greedy algorithm for Cp starting
with α. For instance, the list G(01010101, C1) is given in Table 1 (b). Let also
Cp(n, k) be the set of words α ∈ Cp(n, k) such that G(α,Cp) is a homogeneous
Gray code for Cp(n, k). Equivalently, α ∈ Cp(n, k) if and only if G(α,Cp) contains
every word of Cp(n, k). Since the situation is a bit more complicated than the one
for Fibonacci words, and for clarity, we first investigate the case p ∈ N, explaining
all details of the proofs. Then, we explain how the results are generalized to any
p ∈ R omitting the proofs, which are are similar, but more intricate than those for
p ∈ N.

2.2.1. p ∈ N

We start by investigating the case p ∈ N. We fix such a p throughout this
section. For n ≥ (p+ 1)k, let

• αi,j
n,k := 0pj−i1j−10i1(0p1)k−j0n−(p+1)k (resp. αn,k = 1k0n−k) for i =

0, . . . , p− 1 and j = 1, . . . , k if p ≥ 1 (resp. if p = 0), and
• βi

n,k := 0i1k0n−i−k for i = pk + 1, . . . , n− k.
Because it plays a special role, we will use a different notation for βn−k

n,k , so we
set

• γn,k := βn−k
n,k = 0n−k1k.

Theorem 2.6. Let n ≥ (p+ 1)k, with k ≥ 1.
(1) For all 0 ≤ i ≤ p−1 and 1 ≤ j ≤ k, we have αi,j

n,k ∈ Cp(n, k) (resp. αn,k ∈
C0(n, k)), and G(αi,j

n,k, Cp) (resp. G(αn,k, C0)) is a suffix-partitioned list
with γn,k as last word.

(2) For all j, pk+1 ≤ j ≤ n−k−1, we have βj
n,k ∈ Cp(n, k), and G(βj

n,k, Cp)
is a suffix-partitioned list with γn,k as last word.

(3) γn,k ∈ Cp(n, k), G(γn,k, Cp) is a suffix-partitioned list and its last word is
(i) 0p1 if (n, k) = (p+ 1, 1),

TITLE WILL BE SET BY THE PUBLISHER 9

(ii) βn−k−1
n,k = 0n−k−11k0 if k is odd and n ̸= (p+ 1)k,

(iii) α1,k−1
n,k = 0(k−1)p−11k−2010p1 if k ≥ 3 is odd and n = (p+ 1)k (resp.

αn,k = 1k if p = 0),
(iv) α1,k

n,k = 0kp−11k−1010n−(p+1)k if k is even (resp. αn,k = 1k0n−k if
p = 0).

Proof. We proceed by induction on n. It is easy to check for n = 2. Let n > 2 and
assume that for all m < n the theorem holds for each k such that (p + 1)k ≤ m.
Let k ≥ 1 with (p+ 1)k ≤ n.

(1) Let 1 ≤ j ≤ k and 0 ≤ i ≤ p − 1. Suppose first that n > (p +

1)k. Then αi,j
n,k = αi,j

n−1,k · 0. By the homogeneous greedy algorithm,
G(αi,j

n,k, Cp) starts with G(αi,j
n−1,k, Cp) ·0. By the induction hypothesis, the

last word of G(αi,j
n−1,k, Cp) is γn−1,k, thus G(αi,j

n,k, Cp) = G(αi,j
n−1,k, Cp) ·

0, G(βn−k−1
n−1,k−1, Cp) · 1. By the induction hypothesis, G(αi,j

n−1,k, Cp) (resp.
G(βn−k−1

n−1,k−1, Cp)) contains every word of Cp(n−1, k) (resp. Cp(n−1, k−1))
and is suffix-partitioned. Moreover, the last word of G(βn−k−1

n−1,k−1, Cp) is
γn−1,k−1. Since Cp(n, k) = Cp(n−1, k) ·0⊔Cp(n−1, k−1) ·1, G(αi,j

n,k, Cp)

contains every word in Cp(n, k), it is suffix-partitioned with γn,k as last
word. Now suppose that n = (p+ 1)k. Then, using similar arguments we
get that G(αi,j

n,k, Cp) = G(αi,j
n−2,k−1, Cp) · 01, G(βn−1−k

n−2,k−2, Cp) · 11. Since
Cp((p+ 1)k, k) = Cp((p+ 1)k− 2, k− 1) · 01⊔Cp((p+ 1)k− 2, k− 2) · 11,
we can conclude using the induction hypothesis.

(2) Let pk + 1 ≤ j ≤ n − k − 1. First, we suppose that j ̸= n − k −
1. Then we have βj

n,k = βj
n−1,k · 0, and G(βj

n,k, Cp) = G(βj
n−1,k, Cp) ·

0, G(βn−k−1
n−1,k−1, Cp) · 1 and we can conclude by the induction hypothesis.

Now suppose that j = n − k − 1. Then βn−k−1
n,k = γn−1,k · 0. By the

induction hypothesis, there are four possible cases.
(i) If (n−1, k) = (p+1, 1), then (n, k) = (p+2, 1) and it is easy to check

that the statement is true.
(ii) If k is odd and n−1 ̸= (p+1)k, then the last word of G(γn−1,k, Cp) is

βn−k−2
n−1,k . Thus we have G(βn−k−1

n,k , Cp) = G(γn−1,k, Cp)·0, G(βn−k−2
n−1,k−1, Cp)·

1 and we can conclude.
(iii) If k ≥ 3 is odd and n = (p+1)k+1, then the last word of G(γn−1,k, Cp)

is α1,k−1
n−1,k. Then G(γn−1,k, Cp) · 0, G(α1,k−1

n−1,k−1, Cp) · 1 and we can
conclude too.

(iv) If k is even, then the last word of G(γn−1,k, Cp) is α1,k
n−1,k. In this

case, G(βn−k−1
n,k , Cp) = G(γn−1,k, Cp) · 0, G(βk−1

n−1,k−1, Cp) · 1, and we
can conclude similarly.

(3) Now let us consider γn,k. We have γn,k = γn−1,k−1 · 1. Again, we have
four possible cases.
(i) (n − 1, k − 1) = (p + 1, 1) is impossible, because we would have n =

p+ 2 < (p+ 1)k.

10 TITLE WILL BE SET BY THE PUBLISHER

(ii) If k− 1 is odd and n− 1 ̸= (p+1)(k− 1), then k is even. In this case,
the last word of G(γn−1,k−1, Cp) is βn−k−1

n−1,k−1. Then G(γn,k, Cp) =

G(γn−1,k−1, Cp) · 1, G(γn−1,k, Cp) · 0. Since k is even, the last word of
G(γn−1,k, Cp) is α1,k

n−1,k, so the last word of G(γn,k, Cp) is α1,k
n,k.

(iii) If k−1 ≥ 3 is odd and n−1 = (p+1)(k−1), then n = (p+1)(k−1)+1,
which is impossible because n ≥ (p+ 1)k.

(iv) If k − 1 is even, then k is odd. If k − 1 = 0, then the result is easy
to check. Thus we can assume k − 1 ≥ 2, so k ≥ 3. The last word
of G(γn−1,k−1, Cp) is α1,k−1

n−1,k−1. Suppose that n = (p + 1)k. Then
G(γn,k, Cp) = G(γn−1,k−1, Cp) · 1, and we have all the elements of
Cp((p+1)k, k) (they all end with 1), with α1,k−1

n,k as last word. Now if
n ̸= (p+1)k, we have G(γn,k, Cp) = G(γn−1,k−1, Cp)·1, G(α1,k−1

n−1,k, Cp)·
0. Thus by the induction hypothesis, G(γn,k, Cp) contains every word
of Cp(n, k), with βn−k−1

n,k as last word, which concludes the proof.
□

Lemma 2.7. Let n ≥ (p + 1)k. For all α ∈ Cp(n, k), with α ̸= γn,k, G(α,Cp)
ends with γn,k.

Proof. Even though the proof of [10, Lemma 1] can easily be generalized to each
p ≥ 1, we give an alternative argument. Let α ∈ Cp(n, k), with α ̸= γn,k. If γn,k
appears in G(α,Cp), then it has a predecessor. This predecessor has necessarily
the form 0n−k−t10t1k−1 for some t > 0, and every word with suffix 01k−1 has
appeared before in G(α,Cp). Since a successor of γn,k would also have suffix
01k−1, if γn,k appears in G(α,Cp) then it is necessarily the last word. Now we
prove that it does appear. Let j be the greatest integer such that there exists
a word with suffix 01j in G(α,Cp), and let β be the last word in G(α,Cp) with
this suffix. Then we have either that β is the last word, or its successor has suffix
01j−1. In both cases this means that a word with the suffix 01j+1 has appeared
before. This is a contradiction to the definition of j, unless j = k. Thus γn,k
appears in G(α,Cp). □

Lemma 2.8. Let n ≥ 1. Then for all k with n ≥ (p + 1)k, and for each α ∈
Cp(n, k), G(α,Cp) is a suffix-partitioned list.

Proof. We proceed by induction on n. This is trivial for n = 1. Let n ≥ 2 and
suppose that the statement is true for n− 1. Let k be such that n ≥ (p+ 1)k and
α ∈ Cp(n, k).

• If the last bit of α is 0, then α = α′ · 0 with α′ ∈ Cp(n − 1, k). Since the
homogeneous greedy algorithm first changes the leftmost bits, G(α,Cp)

starts with G(α′, Cp) · 0. If α = βn−k−1
n,k , we can conclude by Theorem

2.6. Otherwise, we have α′ ̸= γn−1,k and by Lemma 2.7, the last word of
G(α′, Cp) is γn−1,k. Then by the homogeneous greedy algorithm, the next
word in G(α,Cp) is 0n−k−11k−101. Again by the homogeneous greedy
algorithm, we have G(α,Cp) = G(α′, Cp) · 0, G(βn−k−1

n−1,k−1, Cp) · 1,L for

TITLE WILL BE SET BY THE PUBLISHER 11

some list L. However, by Lemma 2.7 (or Theorem 2.6), the last word of
G(βn−k−1

n−1,k−1, Cp) is γn−1,k−1. By applying Lemma 2.7 to α, we have in
fact that L is empty. By the induction hypothesis (or Theorem 2.6 for
βn−k−1
n−1,k−1), G(α′, Cp) and G(βn−k−1

n−1,k−1, Cp) are suffix-partitioned list, thus
G(α,Cp) is too.

• If the last bit of α is 1, then α = α′ · 1 with α′ ∈ Cp(n − 1, k − 1).
So G(α,Cp) starts with G(α′, Cp) · 1. If α = γn,k, we can conclude by
Theorem 2.6. Otherwise, α′ ̸= γn−1,k−1 and by Lemma 2.7, the last word
of G(α′, Cp) is γn−1,k−1. Then again by Lemma 2.7 applied to α, we have
G(α,Cp) = G(α′, Cp) · 1. By the induction hypothesis, we conclude that
G(α,Cp) is suffix-partitioned.

□

Theorem 17 in [4] proves that if α has the form 0i1k0n−k−i, then it is a generator
for C0(n, k); that is, α ∈ C0(n, k). In the next proposition, we show that these are
all the generators of C0(n, k) and establish corresponding results for p ≥ 1.

Proposition 2.9. Let n ≥ (p+ 1)k. If p ≥ 1 then

Cp(n, k) =
k∪

j=1

{0pj−i1j−10i1(0p1)k−j0n−(p+1)k | 0 ≤ i ≤ p− 1}

∪ {0i1k0n−i−k | pk + 1 ≤ i ≤ n− k}.

If p = 0 then C0(n, k) = {0i1k0n−i−k | 0 ≤ i ≤ n− k}. In particular,

|Cp(n, k)| = n− k + 1− p.

Proof. The inclusion from right to left has been established in Theorem 2.6. We
prove the other inclusion when p ≥ 1 (it is very similar and actually easier for p =
0). We start be investigating the elements of Cp((p+1)k, k). Let α ∈ Cp((p+1)k, k).
Each element of Cp((p + 1)k, k) has last bit 1, so α = α′ · 1, with α′ ∈ Cp((p +
1)k − 1, k − 1). By Proposition 1.4 and Lemma 2.8, G(α,Cp) is r-t partitioned.
Since it contains every word in Cp((p+1)k− 1, k− 1), α′ must have the longest or
the shortest possible tail. The only word with the longest tail is γ(p+1)k−1,k−1 =

0pk1k−1. Thus we have either α = 0pk1k or α′ = α′′ ·0 with α′′ ∈ Cp((p+1)k−2, k−
1). By iterating this process, we have either α ∈ {0pk−i1k−10i1 | 0 ≤ i ≤ p − 1},
or α = β · 0p1 with β ∈ Cp((p+ 1)(k − 1), k − 1). Again by iterating, we get that

α ∈
k∪

j=1

{0pj−i1j−10i1(0p1)k−j0n−(p+1)k | 0 ≤ i ≤ p− 1}.

Now let δ ∈ Cp(n, k), with δ ̸∈ {0i1k0n−i−k | pk + 1 ≤ i ≤ n − k}. By the same
argument as before, either δ = δ′ · 0 with δ′ ∈ Cp(n − 1, k), or δ = γn,k. By
hypothesis on δ, the latter cannot happen. The same dichotomy applies to δ′, but

12 TITLE WILL BE SET BY THE PUBLISHER

the hypothesis on δ implies δ′ = δ′′ · 0 with δ′′ ∈ Cp(n− 2, k). By iterating, we get
that δ = α · 0n−(p+1)k with α ∈ Cp((p+ 1)k, k). We can conclude by the previous
investigation. □

Remark 2.10. Propositions 2.5 and 2.9 highlight the fact that the choice of the
first element for the homogeneous greedy algorithm is crucial. Indeed, only a few
elements will produce a Gray code for F2(n, k) or Cp(n, k) with this algorithm.

2.2.2. p ∈ [1,+∞)

For p ∈ [1,+∞) and i ∈ N⋆, we set νi(p) := ⌈ip⌉ − ⌈(i − 1)p⌉. Then νi(p) ≥ 1
for all i. Note that νi(p) = p for all i ∈ N⋆ if p is an integer, and the sequence
(νi(p))i is b-periodic if p = a/b with a and b coprime. For 1 ≤ j ≤ k and
0 ≤ i ≤ νj(p) − 1, let αi,j

n,k = 0⌈jp⌉−i1j−10i1(0νj+1(p)1) . . . (0νk(p)1)0n−k−⌈kp⌉. For
⌈pk⌉+1 ≤ i ≤ n−k−1 let βi

n,k = 0i1k0n−i−k, and let γn,k = 0n−k1k. With these
notations, the counterpart of Theorem 2.6 for p ∈ [1,+∞) is as follows.

Theorem 2.11. Let p ∈ [1,+∞) and n ≥ (p+ 1)k, with k ≥ 1.
(1) For all 1 ≤ j ≤ k and 0 ≤ i ≤ νj(p) − 1, we have αi,j

n,k ∈ Cp(n, k), and
G(αi,j

n,k, Cp) is a suffix-partitioned list with γn,k as last word.
(2) For all ⌈pk⌉+1 ≤ j ≤ n− k− 1, we have βj

n,k ∈ Cp(n, k), and G(βj
n,k, Cp)

is a suffix-partitioned list with γn,k as last word.
(3) γn,k ∈ Cp(n, k), G(γn,k, Cp) is a suffix-partitioned list and its last word is

(i) βn−k−1
n,k = 0n−k−11k0 if k is odd and n > k + ⌈pk⌉,

(ii) α1,k−1
n,k if k ≥ 1 is odd and n = k + ⌈pk⌉,

(iii) α1,k
n,k if k is even.

Then Proposition 2.9 can be generalised as follows.

Proposition 2.12. Let p ∈ [1,+∞) and n ≥ (p+ 1)k. Then

Cp(n, k) =
k∪

j=1

{0⌈jp⌉−i1j−10i1(0νj+1(p)1) . . . (0νk(p)1)0n−k−⌈kp⌉ | 0 ≤ i ≤ νj(p)− 1}

∪ {0i1k0n−i−k | ⌈pk⌉+ 1 ≤ i ≤ n− k}.

In particular,
|Cp(n, k)| = n− k + 1− ⌈p⌉.

2.2.3. 0 < p < 1

Let 0 < p < 1. For i ∈ N, we set ui(p) := ⌊i/p⌋ − ⌊(i− 1)/p⌋. Let N = Np,k =
max{m ∈ N | ⌊m/p⌋ ≤ k} = ⌈p(k + 1)⌉ − 1. For 1 ≤ j ≤ N , let

αj
n,k =

{
0j1⌊j/p⌋(01uj+1(p)) . . . (01uN (p))(01k−⌊N/p⌋)0n−k−N−1 if k > ⌊N/p⌋

0j1⌊j/p⌋(01uj+1(p)) . . . (01uN (p))0n−k−N if k = ⌊N/p⌋.

TITLE WILL BE SET BY THE PUBLISHER 13

For N + 1 ≤ i ≤ n− k, let βi
n,k = 0i1k0n−i−k. Then

Cp(n, k) = {αj
n,k | 1 ≤ j ≤ N} ∪ {βi

n,k | N + 1 ≤ i ≤ n− k}.

In particular, |Cp(n, k)| = n− k = n− k + 1− ⌈p⌉.

3. Generating algorithms

Recursive procedures fib in Algorithm 1 and Pref in Algorithm 2 are specific
implementations for F2, and respectively, for Cp of the homogeneous greedy algo-
rithm defined in Definition 2. In these algorithms, binary words are represented
by the global array b. The global array s stores the positions of the 1s in b, with
s[i] giving the position of the ith 1 (reading b from left to right). In the case of
the Fib procedure, we define s[0] = −1 for convenience.

In order to generate Fibonacci words (resp. prefixes of generalized Dyck words)
of length n and weight k in homogeneous Gray code order, the word b is initial-
ized with an element of F2(n, k) (resp. Cp(n, k)) and the array s is initialized
accordingly. For convenience, in the Fibonacci case, we set b[n + 1] = 0, and
b is printed before the main call of Fib(n, k) (resp. Pref(n, k)). In particular,
when the initial word b belongs to F(n, k) (resp. Cp(n, k)) — that is, when b is a
generator as defined in the previous section — the entire list for the set F2(n, k)
(resp. Cp(n, k)) is produced.

The call of Fib(m, j) or Pref(m, j) produces at most two recursive calls and
operates on the prefix of length m and weight j of the current word b.
In the case of Fib:

• When j = 0 or m = 1, or m = 2j − 1, the length-m prefix of b is unique,
and the call is terminal and a new word is generated;

• Otherwise, when b[m + 1] = 1 (and therefore b[m] = 0) a single recursive
call is made;

• In all other cases, two recursive calls are made.
In the case of Pref:

• When j = 0 or j = m, the length-m prefix of b is unique, and the call is
terminal and a new word is generated;

• Otherwise, when p ≥ 1 and m = (p+1)j (and therefore b[m] = 1) a single
recursive call is made;

• In all other cases, two recursive calls are made.
See Table 1 for two examples of generated lists, and Figures 1, 2, and 3 for

the trees induced by the recursive calls. In these trees, nodes are labeled with the
current value of the word b, they have at most two successors and words in sibling
nodes at level i (the root having level 0) have different values at position n− i+1
(in bold), and share the same suffix of length i− 1.

Since our generating algorithms are specific implementations of the homoge-
neous greedy algorithm defined in Definition 2, and by using Propositions 2.5 and
2.9, we obtain the following corollary.

14 TITLE WILL BE SET BY THE PUBLISHER

Algorithm 1 Greedy Gray code algorithm for Fibonacci words of length n and
weight k.

procedure Fib(m, j: integer)
global b, s: array
if j > 0 and m > 1 and m ̸= 2j − 1 then

if b[m+ 1] = 1 then
Fib(m− 1, j)

else
if b[m] = 0 then

Fib(m− 1, j)
(b[m], b[s[j]])← (1, 0) # transpose in the length-m prefix of b

the rightmost bit with the rightmost 1
s[j]← m # update the position of the jth 1 in b
print b
Fib(m− 1, j − 1)

else # b[m] = 1
Fib(m− 1, j − 1)
u← s[j − 1] + 2
(b[m], b[u])← (0, 1) # transpose homogeneously in the

length-m prefix of b the rightmost
bit with the leftmost possible 0

s[j]← u # update the position of the jth 1 in b
print b
Fib(m− 1, j)

endif
endif

endif
end procedure

Corollary 3.1. Algorithm 1, and respectively, Algorithm 2, generate a homoge-
neous Gray code for the set F2(n, k) and, respectively, for the set Cp(n, k), provided
that the initial words b belong to F(n, k) and, respectively, to Cp(n, k).

It is easy to see that in the trees produced by the recursive calls of the generating
procedures Fib and Pref, there are no two consecutive calls of degree one (where
the degree of a call is defined as the number of recursive calls it produces); see
again Figures 1, 2 and 3. With this remark, and by using standard techniques
from [7] we have the following result.

Proposition 3.2. Both Algorithms 1 and 2 run in constant amortized time.

Notably, Algorithms 1 and 2 can be sped up by bypassing degree-one recursive
calls. However, their definitions become more complex while preserving the same

TITLE WILL BE SET BY THE PUBLISHER 15

0101000 0100010
1001000 0001010
1010000 0001001
1000100 1000001
0100100 0100001
0010100 0010001
0010010 0000101
1000010

01010101 00101011
00110101 00110011
00101101 01010011
01001101 01000111
00011101 00100111
00011011 00010111
01001011 00001111

(a) (b)
Table 1. (a) The homogeneous greedy Gray code for F2(7, 2)
obtained by the call Fib(7, 2) when the initial word is b = 0101000;
and (b) that is obtained for C1(8, 4) by the call pref(8, 4) when
p = 1 and the initial word b = 01010101.

time complexity class. Both algorithms are implemented in C and appear on the
second author web page https://v.vincent.u-bourgogne.fr/0ABS/0ART/Progs.pdf.
Acknowledgments: The authors would like to thank the anonymous referees for
their comments, which have significantly improved the presentation of the paper,
and Sergey Kirgizov for fruitful discussions during an early stage of the revision.

001010

001010

001010

001010

001010 100010

100010 010010

010100

010100

010100

010100 100100

101000

100001

100001

100001

100001

100001 010001

001001

000101

Figure 1. The tree of recursive calls produced by the call of
Fib(6, 2) with initial word b = 001010. A homogeneous Gray code
for F2(6, 2) is obtained by collecting the words b at the leaves
(terminal calls).

16 TITLE WILL BE SET BY THE PUBLISHER

Algorithm 2 Greedy Gray code algorithm for prefixes of generalized Dyck words
of length m and weight k.

procedure Pref(m, j: integer)
global p: integer; b, s: array
if j > 0 and j ̸= m then

if b[m] = 0 then
Pref(m− 1, j)
(b[m], b[s[j]])← (1, 0) # transpose in the length-m prefix of b

the rightmost bit with the rightmost 1
s[j]← m # update the position of the jth 1 in b
print b
Pref(m− 1, j − 1)

else # b[m] = 1
Pref(m− 1, j − 1)
u← max(s[j − 1] + 1, (p+ 1)j)
if u ̸= m

(b[m], b[u])← (0, 1) # transpose homogeneously in the length-m prefix of b
the rightmost bit with the leftmost possible 0

s[j]← u # update the position of the jth 1 in b
print b
Pref(m− 1, j)

endif
endif

endif
end procedure

1001

1001

1001

1001 0101

0011

0110

0110

0110

0110 1010

1100

1001

1001

1001 0101

0011

0011

0011

0011 1001

1001 0101

0110

0110

0110 1010

1100

(a) (b) (c)

Figure 2. The tree of recursive calls produced by the call of
Pref(4, 2) with p = 0, when the initial word is: (a) b = 1001; (b)
b = 0110; and (c) b = 0011. For the last two cases, homogeneous
Gray codes for C0(4, 2) are obtained by collecting the words b at
the leaves. See Example 1.2.

TITLE WILL BE SET BY THE PUBLISHER 17

010101

010101

010101

010101

010101

010101

001101

001011

001011

001011 010011

010011

000111

Figure 3. The tree of recursive calls produced by the call of
Pref(6, 3) with p = 1, when the initial word is b = 010101. A
homogeneous Gray code for C1(6, 3) is obtained by collecting the
words b at the leaves.

18 TITLE WILL BE SET BY THE PUBLISHER

References

[1] A. Bultena and F. Ruskey, An Eades-McKay algorithm for well-formed parentheses strings,
Information Processing Letters, 68 (1998), 255-259.

[2] P. Eades and B. McKay, An algorithm for generating subsets of fixed size with a strong
minimal change property, Information Processing Letters, 19 (1984), 131-133.

[3] N. Hassler, V. Vajnovszki, D. Wong, Greedy Gray codes for some restricted classes of
binary words, GASCom 2024, June 24–28, Bordeaux, France.

[4] A. Merino, T. Mütze, A. Williams, All your bases are belong to us: listing all bases of a
matroid by greedy exchanges, FUN 2022, May 30–June 3, 2022, Island of Favignana, Sicily,
Italy

[5] A. Merino and T. Mütze, Traversing Combinatorial 0/1-Polytopes via Optimization, SIAM
Journal on Computing, 53(5), 2024.

[6] T. Mütze, Combinatorial Gray codes – an updated survey, Electronic Journal of Combi-
natorics, Dynamic Survey DS26, 93 pp., 2023.

[7] F. Ruskey. Combinatorial Generation. 2003. Working version.
[8] V. Vajnovszki and T. Walsh, A loop-free two-close Gray-code algorithm for listing k-ary

Dyck words, Journal of Discrete Algorithms, 4 (2006).
[9] A. Williams, The greedy Gray code algorithm, in F. Dehne, R. Solis-Oba, and J.-R. Sack,

editors, Algorithms and Data Structures, pp. 525–536, Berlin, Heidelberg, 2013.
[10] D. Wong and V. Vajnovszki, Greedy Gray codes for Dyck words and ballot sequences,

COCOON 2023, 15–17 December 2023, Hawaii, USA.

Communicated by (The editor will be set by the publisher).
(The dates will be set by the publisher).

