TD Chiffrement à clé publique

Diffie-Hellman

Exo 1 Ecrire un algorithme non-recursif qui, pour deux entiers g, x saisis par l'utilisateur, calcule g^x . Modifier l'algorithme pour qu'il utilise la représentation en base deux de x.

Exo 2 Pour p un nombre premier $\mathbb{F}_p^* = (\mathbb{Z}/p\mathbb{Z})^* = \{1, 2, \dots, p-1\}$ est un groupe avec la multiplication. Pour $\mathbb{F}_7^* = \{1, 2, 3, 4, 5, 6\}$

- 1. Donner la table de multiplication,
- 2. Résoudre les équations : $2 \cdot x = 2$; $5 \cdot x = 2$; $6 \cdot x = 1$
- 3. Calculer $g^x \mod 7$ pour $g, x \in \{1, 2, 3, 4, 5, 6\}$.
- 4. Quelles sont les générateurs de \mathbb{F}_7^* ?
- 5. Calculer $\log_5 2$, $\log_5 3$, $\log_3 6$.
- 6. L'indicateur d'Euler φ est la fonction qui à n associe le nombre d'entiers strictement positifs inférieurs ou égaux à n et premiers avec n. Par exemple, $\varphi(8)=4$. Verifier pour \mathbb{F}_7^* que : le nombre de générateurs de \mathbb{F}_p^* est $\varphi(p-1)$;
- 7. Alice et Bob veulent appliquer le protocole de Diffie-Hellman. Ils choisissent en commun p=7 et g=5. Choisir des clés secrètes a (pour Alice) et b (pour Bob) et appliquer le protocole avec ces deux valeurs.

Exo 3

- 1. 2 est un générateur de \mathbb{F}_{11}^* ?
- 2. 3 est un générateur de \mathbb{F}_{11}^* ?
- 3. combien de générateurs possède \mathbb{F}_{11}^* ?
- 4. en \mathbb{F}_{11}^* calculer $\log_2 10$ (solution de l'équation $2^x = 10$) et $\log_8 2$ (solution de l'équation $8^x = 2$).
- 5. L'algorithme suivant teste si a est un générateur de \mathbb{F}_p^* .

```
teste générateur entrées : un entier premier p, un entier a sortie : OUI, si a est un générateur de \mathbb{F}_p^*, NON sinon pour tout q, premier et divisant p-1 faire  \text{si } a^{\frac{p-1}{q}} = 1 \mod p  alors renvoyer NON  \text{fin si}  fin pour renvoyer OUI end procedure.
```

Appliquer ce teste pour répondre aux points 1. et 2.

Exo 4

- 1. Montrer que 5 est un générateur de \mathbb{F}_{17}^* .
- 2. Montrer que 4 n'est pas un générateur de \mathbb{F}_{17}^* . En déduire la valeur de $4^n \mod 17$ pour tout entier n.
- 3. Alice et Bob veulent appliquer le protocole de Diffie-Hellman. Ils choisissent en commun g=5 et p=17. Choisir des clés secrètes a (pour Alice) et b (pour Bob) et appliquer le protocole avec ces deux valeurs.

RSA

Exo 5 Soit p=3 et q=5 deux nombres premier et $n=p\cdot q=15$.

- 1. Pour chaque e, $1 < e < (p-1) \cdot (q-1) = 8$, premier avec $(p-1) \cdot (q-1) = 8$ trover un d tel que $e \cdot d = 1 \mod (p-1) \cdot (q-1)$.
- 2. Pour chaque couple (e,d) trouver au point 1. et $x \in \{2,3,4,5\}$ verifier que $x^{e \cdot d} = x \mod n$.
- 3. Décrire le protocole RSA avec
 - (a) les données privées d'Alice : p = 3, q = 5,
 - (b) la clé publique : (n, e) = (15, 3)

(Choisir le message x = 3)

Exo 6 Décrire le protocole RSA avec les données privées d'Alice : p=3 et q=7. (Choisir e=5 et le message x=2)

Protocole de partage de clé secrète de Shamir

Exo 7 Soit $P: \mathbb{R} \to \mathbb{R}$ le polynôme de degré minimale qui passe par les points de contrôle (-1,1), (1,3) et (-2,3).

- Calculer P(0),
- Donner le polynôme P.

Exo 8 Résoudre les équations suivantes en $\mathbb{Z}/5\mathbb{Z}$: 4x = 2, 2x + 3 = 1, 3x + 1 = 2x + 4. **Exo 9** Soit $Q: \mathbb{Z}/11\mathbb{Z} \to \mathbb{Z}/11\mathbb{Z}$, Q(x) = 2x + 3. Donner le secret et cinq parts du secret :

$$p1=Q(1)$$
, $p2=Q(2)$, $p3=Q(3)$, $p4=Q(4)$, $p5=Q(5)$.

Exo 10 Une famille de quatre personnes décide de garder leur fortune dans un coffre fort électronique; chaque personne a son propre code (part du secret). Le coffre s'ouvre si trois de ces quatre codes sont saisis. Les codes sont :

Soit $R: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ le polynôme correspondent à ce protocole.

- Donner R(0) (le secret),
- Donner R,
- Tracer la graphique de la fonction R.

Exo 11

Dans l'exercice précédent, les valeurs R(0), R(1), R(2), R(3), R(4) sont redondantes : à partir de n'importe quelles trois valeurs, on peut obtenir les deux autres. Basé sur cette remarque, proposez un code détecteur d'erreurs utilisant des polynômes de degré deux $P: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$.