THE EQUIDISTRIBUTION OF SOME DESCENT SET BASED STATISTICS ON WORDS

Vincent Vajnovszki
vvajnov@u-bourgogne.fr
LE2I, Université de Bourgogne Franche-Comté, Dijon, France
MSC2000: 05A05

For a length n permutation π, $\text{Des} \pi$ (respectively, $\text{Desc} \pi$) denotes the descent set of π (respectively, the set $\{n - i \mid i \in \text{Des} \pi\}$, i.e, the descent set of the reverse-complement of π), and $\text{Ides} \pi$ denotes the descent set of π^{-1}; and Des, Desc and Ides become set valued statistics. In 1976 Foata and Schützenberger showed that the bistatistics $(\text{Des}, \text{Ides})$ and $(\text{Desc}, \text{Ides})$ have the same distribution on the set of same-length permutations. Their proof uses the Robinson-Schensted correspondence between permutations and ordered pairs of standard Young tableaux, and they asked for a proof that could avoid the use of that correspondence. In this presentation such a proof is given, and extending Ides to words we show that $(\text{Des}, \text{Ides})$ and $(\text{Desc}, \text{Ides})$ have the same distribution on the set of rearrangements of the symbols of a word.

As a consequence, we show the joint equidistribution on the rearrangements of the symbols of a word of stat, maj and Ides, and of maj, stat and Ides, together with other statistics; here maj is the celebrated major index statistic, and stat is the generalization given by Kitaev and the present author (2016) of a Mahonian statistic which is defined originally on permutations in terms of vincular patterns by Babson and Steingrimsson (2000). This equidistribution is a generalization from permutations to words of a result of Burnstein (2010), and on which our construction is also based, and it refines a result stated in the above mentioned 2016 paper.