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Abstract

In 2012 Bóna showed the rather surprising fact that the cumulative number of occurrences
of the classical patterns 231 and 213 is the same on the set of permutations avoiding 132,
even though the pattern based statistics 231 and 213 do not have the same distribution on
this set. Here we show that if it is required for the symbols playing the role of 1 and 3 in the
occurrences of 231 and 213 to be adjacent, then the obtained statistics are equidistributed on
the set of 132-avoiding permutations. Actually, expressed in terms of vincular patterns, we
prove bijectively the following more general results: the statistics based on the patterns 231,
213 and 213, together with other statistics, have the same joint distribution on Sn(132),
and so do the patterns 231 and 312; and up to trivial transformations, these statistics are
the only based on length-three proper (not classical nor consecutive) vincular patterns which
are equidistributed on a set of permutations avoiding a classical length-three pattern.

1 Introduction

In [2] Barnabei, Bonetti and Silimbani showed the equidistribution of some length-three consec-
utive patterns involvement statistics on the set of permutations avoiding the classical pattern
312 (or equivalently, 132), and in [4] Bóna showed the surprising fact that the total number of
occurrences of the patterns 231 and 213 is the same on the set of 132-avoiding permutations,
despite the pattern based statistics 231 and 213 having different distribution on this set. In [6],
Homberger, generalizing Bóna’s result, gave the total number of occurrences of each classical
length-three pattern on the set of 123-avoiding permutations, and showed that the total number
of occurrences of the pattern 231 is the same in the set of 123- and 132-avoiding permutations,
despite the pattern based statistic 231 having different distribution on these two sets.

Vincular patterns, introduced by Babson and Steingŕımsson [1], are a generalization of the
notion of pattern where, for example, some entries are required to occur consecutively, and in
[8] Mansour considered permutations avoiding 132 and containing various length-three vincular
patterns exactly 0 or 1 times. Motivated by these, Burnstein and Elizalde gave in [5], in a
much more general context, the total number of occurrences of any vincular pattern of length
three on 231-avoiding (or equivalently, 132-avoiding) permutations, and more recently, Baxter
[3] gave algorithmic methods to efficiently compute several statistics over some pattern-avoiding
permutations.
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In this paper we show that, on the set of 132-avoiding permutations, the vincular pattern
based statistics 231, 213 and 213 are equidistributed, and so are 231 and 312; and numerical
evidence shows that, up to trivial transformations, these patterns are the only length-three
proper (not classical nor consecutive) vincular patterns equidistributed on a set of permutations
avoiding a classical length-three pattern.

It is worth to mention that, on the set of unrestricted permutations, the statistics 231 and
312 are trivially equidistributed, and so are 231 and 213 (which is all but obvious on 132-avoiding
permutations), and this last distribution is different from that of 213.

More precisely, in this paper we show bijectively the equidistribution on 132-avoiding per-
mutations of the tuples of statistics

• (231, 213, rlmin, rlmax) and (213, 231, rlmax, rlmin),

• (231, des) and (213, des),

• (213, des, 12 ) and (213, des, 12 ),

• (231, 312, des) and (312, 231, des),

where rlmax, rlmin and des are respectively, the number of right-to-left maxima, right-to-left
minima and descents. The corresponding bijections (the last of them being straightforward) are
presented in Section 3.

2 Notations and definitions

A permutation of length n is a bijection from the set {1, 2, . . . , n} to itself and we write permu-
tations in one-line notation, that is, as words π = π1π2 . . . πn, where πi is the image of i under
π. Let Sn denote the set of permutations of length n.

2.1 Permutation patterns

Let σ ∈ Sk and π = π1π2 . . . πn ∈ Sn, k ≤ n, be two permutations. One says that σ occurs as a
(classical) pattern in π if there is a sequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1πi2 · · ·πik is
order-isomorphic to σ. For example, 231 occurs as a pattern in 13452, and the three occurrences
of it are 342, 352 and 452.

Vincular patterns have been introduced in [1] and they were extensively studied since then
(see Chapter 7 in [7] for a comprehensive description of results on these patterns). Vincular
patterns generalize classical patterns and they are defined as follows:

• Any pair of two adjacent letters may now be underlined, which means that the correspond-
ing letters in the permutation must be adjacent. For example, the pattern 213 occurs in
the permutation 425163 four times, namely, as the subsequences 425, 416, 216 and 516.
Note that the subsequences 426 and 213 are not occurrences of the pattern because their
last two letters are not adjacent in the permutation.

• If a pattern begins (resp., ends) with a hook then its occurrence is required to begin (resp.,
end) with the leftmost (resp., rightmost) letter in the permutation. For example, there are
two occurrences of the pattern 213 in the permutation 425163, which are the subsequences
425 and 416.

We denote by Sn(σ) the set of permutations in Sn avoiding the pattern σ.
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2.2 Statistics

A statistic on a set of permutations is simply a function from the set to N. Classical examples
of statistics on Sn are the descent number

desπ = card {i : 1 ≤ i < n, πi > πi+1},

and the inversion number

inv π = card {(i, j) : 1 ≤ i < j ≤ n, πi > πj}.

For example des 45312 = 2 and inv 45312 = 8.
In a permutation π = π1π2 . . . πn, πi is a right-to-left maximum if πi > πj for all j > i; and

the number of right-to-left maxima of π is denoted by rlmaxπ. Similarly, πi is a right-to-left
minimum if πi < πj for all j > i; and the number of right-to-left minima of π is denoted by
rlminπ.

For a set of permutations P , two statistics ST and ST
′ have the same distribution (or are

equidistributed) on P if, for any k,

card{π ∈ P : STπ = k} = card{π ∈ P : ST′ π = k},

and the tuples of statistics, or multistatistics, (ST1, ST2, . . . , STp) and (ST′1, ST
′
2, . . . , ST

′
p) have the

same distribution if, for any p-tuple k = (k1, k2, . . . , kp),

card{π ∈ P : (ST1, ST2, . . . , STp)π = k} = card{π ∈ P : (ST′1, ST
′
2, . . . , ST

′
p)π = k}.

For a permutation π and a (vincular) pattern σ we denote by (σ)π the number of occurrences
of this pattern in π, and (σ) becomes a permutation statistic. For example, (21)π is desπ; (21)π
is inv π; and (12 )π is the last value of π minus one. Similarly, for a set of (vincular) patterns
{σ, τ, . . .}, we denote by (σ + τ + · · · )π the number of occurrences of these patterns in π.

2.3 Sum decomposition

For a permutation π, |π| denotes its length (and so, π ∈ S|π|), and for two permutations α and β,
the skew sum of α and β, denoted α⊖ β, is the permutation π of length |α|+ |β| with

πi =

{

αi + |β| if 1 ≤ i ≤ |α|,
βi−|α| if |α|+ 1 ≤ i ≤ |α|+ |β|,

and the direct sum of α and β, denoted α⊕ β, is the permutation π of length |α|+ |β| with

πi =

{

αi if 1 ≤ i ≤ |α|,
βi−|α| + |α| if |α|+ 1 ≤ i ≤ |α|+ |β|.

It is easy to check the following fact.

Fact 1. For two permutations α and β, desα ⊕ β = desα + desβ and, when α and β are not
empty, desα⊖ β = desα+ desβ + 1.

The next characterization of 132-avoiding permutations is folklore.

Fact 2. For a non-empty permutation π ∈ Sn, n ≥ 1, the following are equivalent:
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Figure 1: The two decompositions of π ∈ Sn(132): (1) π = (α⊕ 1)⊖β, and (2) π = α⊖ (β⊕ 1).

• π avoids 132,

• π can uniquely be written as (α⊕ 1)⊖ β,

• π can uniquely be written as α⊖ (β ⊕ 1),

where α and β are (possibly empty) 132-avoiding permutations. See Fig. 1.

2.4 Permutation symmetries

For π ∈ Sn, the reverse and complement of π, denoted πr and πc respectively, are the permuta-
tions in Sn defined as:

• πri = πn−i+1,

• πci = n− πi + 1.

Both operations can naturally be extended to vincular patterns; for instance, the reverse of 231
is 132, and the complement of 231 is 213. These operations preserve pattern containment, in the
sense that, if the (vincular) pattern σ is contained in the permutation π, then σr is contained
in πr, and σc is contained in πc.

The inverse of π, denoted π−1, is defined as:

• π−1
πi

= i,

but, unlike the reverse and complement, it cannot be extended to vincular patterns: in general,
the inverse of a vincular pattern is a bivincular pattern (see for example [7, p. 13] for its formal
definition) a notion that we will not consider here.

3 The main results

3.1 Equidistribution of (231, 213, rlmax, rlmin) and (213, 231, rlmin, rlmax) on Sn(132): bi-

jection φ

We define a mapping φ on Sn(132) and we will see that it is an involution, that is, a bijection
from Sn(132) into itself, which is its own inverse; and Theorem 1 below shows the desired
equidistribution.

The mapping φ is recursively defined as follows: if π is the empty permutation (that is,
n = 0), then φ(π) = π; and if π ∈ Sn(132), n ≥ 1, with π = α ⊖ (β ⊕ 1) for some 132-avoiding
permutations α and β, then

φ(π) = φ(β)⊖ (φ(α)⊕ 1).
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See Fig. 2 for this definition.
Note that φ(π) is in some sense similar to π−1, the inverse of π, but it is in fact different.

Indeed, the inversion map when restricted to Sn(132), satisfies: (α⊖ (β ⊕ 1))−1 = (β−1 ⊕ 1) ⊖
α−1.

π=

α

β

s

→

φ(β)

φ(α)

s
=φ(π)

Figure 2: The recursive definition of φ(π).

By induction on n, from the definition of φ it follows that if π ∈ Sn(132), then φ(π) ∈ Sn(132)
and φ(φ(π)) = π, and in particular φ is a bijection of Sn(132) to itself.

In the proof of the next theorem we will need the following result.

Proposition 1. For any π ∈ Sn(132), we have (12 )π = (21 )φ(π), and (21 )π = (12 )φ(π).

Proof. If π = α⊖ (β ⊕ 1) is a non-empty 132-avoiding permutation, then (21 )φ(π) = |φ(β)| =
|β| = (12 )π; and (12 )φ(π) = |φ(α)| = |α| = (21 )π.

Theorem 1. If π ∈ Sn(132), then

(213, 231, rlmin, rlmax)φ(π) = (231, 213, rlmax, rlmin)π.

Proof. By induction on n. Trivially, the statement holds for n = 0, and consider π = α⊖(β⊕1) ∈
Sn(132), n ≥ 1, for some 132-avoiding permutations α and β.

First we prove that rlmaxπ = rlminφ(π). Indeed, by the induction hypothesis rlminφ(α) =
rlmaxα, and rlminφ(π) = 1 + rlminφ(α) = 1 + rlmaxα = rlmaxπ. In addition, since φ is an
involution, it follows that rlminπ = rlmaxφ(π).

An occurrence of 213 in φ(π) can be found either in φ(α), or in φ(β), or has the form
abc with ab an occurrence of 21 in φ(α) and c the last symbol of φ(π). Thus (213)φ(π) =
(213)φ(α) + (213)φ(β) + (21 )φ(α), and by the induction on n and Proposition 1 we have
(213)φ(π) = (231)α+ (231)β + (12 )α.

An occurrence of 231 in π can be found either in α, or in β, or has the form abc with ab

an occurrence of 12 in α and c the first symbol of β, if β is not empty, otherwise c is the last
symbol of π. Thus (231)π = (231)α+ (231)β + (12 )α, and finally (213)φ(π) = (231)π.

Moreover, since φ is an involution, it follows that (231)φ(π) = (213)π, which completes the
proof.

3.2 Equidistribution of (231, des) and (213, des) on Sn(132): bijection ψ

The 3-statistics (231, 213, des) and (213, 231, des) do not have the same distribution on
Sn(132); however in [5, Theorem 3.12] it is shown that (231) and (213) have the same dis-
tribution and Theorem 2 below refines this result by proving bijectively that (231) and (213),
together with des, have the same joint distribution. In order to do this, we define the mapping
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ψ : Sn(132) → Sn(132) by ψ(1) = 1 if n = 1, and for n ≥ 2, ψ(π) is defined recursively below,
according to the following three cases: π−1

n = 1, 2 ≤ π−1
n ≤ n− 1, and π−1

n = n; see Fig. 3.

Let π ∈ Sn(132), n ≥ 2.

1. If π has the form 1⊖ α (or equivalently, π−1
n = 1), then ψ(π) is simply 1⊖ ψ(α).

2. If π has the form (α⊕ 1)⊖ β for some non-empty permutations α and β (or equivalently,
2 ≤ π−1

n ≤ n−1), then ψ(π) is obtained by considering the (possibly empty) permutations
γ and δ defined by ψ(β) = γ ⊖ (δ ⊕ 1), and defining ψ(π) as ((ψ(α) ⊖ (δ ⊕ 1)) ⊕ 1) ⊖ γ.
Note that α and β are 132-avoiding permutations, and by induction on n so are ψ(β), γ
and δ.

3. If π has the form α ⊕ 1 for some non-empty permutation α (or equivalently, π−1
n = n),

then ψ(π) is obtained by considering the (possibly empty) permutations γ and δ with
ψ(α) = (γ ⊕ 1)⊖ δ, and defining ψ(π) as ((γ ⊕ 1)⊕ 1)⊖ δ. Note that, as above, α, γ and
δ are 132-avoiding permutations.

From the above definition of ψ it is easy to check the following.

Proposition 2. Let π ∈ Sn(132), n > 1, and σ = ψ(π).

1. π−1
n = 1 iff σ−1

n = 1,

2. 2 ≤ π−1
n ≤ n− 1 with n > 2 iff σ−1

n > 1 and σ−1
n − σ−1

n−1 > 1,

3. π−1
n = n iff σ−1

n > 1 and σ−1
n − σ−1

n−1 = 1.

Theorem 2. The mapping ψ is a bijection on Sn(132), and for any π ∈ Sn(132), we have

(213, des)ψ(π) = (231, des)π.

Proof. Let π ∈ Sn(132). By induction on n, from Proposition 2 it follows that ψ is injective and
thus bijective. In addition, from Fact 1 it follows that desπ = desψ(π); see Fig. 3 where the
number of descents is preserved for each intermediate permutation in the construction of ψ(π)
from π.

Now we show by induction on n that (213)ψ(π) = (231)π, for any π ∈ Sn(132), n ≥ 1.
Clearly, for n = 1, (213)ψ(π) = (231)π, and let π ∈ Sn(132), n > 1.

1. If π−1
n = 1, then π = 1 ⊖ α for some α ∈ Sn−1(132), and by definition, ψ(π) = 1 ⊖ ψ(α).

By the induction hypothesis we have (213)ψ(α) = (231)α, and thus (213)ψ(π) = (213)ψ(α) =
(231)α = (231)π.

2. If 1 ≤ π−1
n ≤ n − 1, let α, β, γ and δ be the permutations appearing in the second case of

the definition of ψ (see Fig. 3), and we have

(213)ψ(π) = (213)ψ(α) + |α|+ (213) δ ⊕ 1 + (213) γ
= (213)ψ(α) + |α|+ (213)ψ(β),

and by the induction hypothesis, (213)ψ(π) = (231)α+ |α|+ (231)β = (231)π.
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s
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s

ψ(α) =ψ(π)

(1)

π=

α

β

s

→

ψ(α)

ψ(β)

s

=

ψ(α)

γ

δ

s
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→

ψ(α)
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s

=ψ(π)
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π=

s

α →

s

ψ(α) =

s

s

γ

δ

→

s

s

γ

δ

=ψ(π)
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Figure 3: The three cases occurring in the definition of ψ: (1) π−1
n = 1, (2) 2 ≤ π−1

n ≤ n − 1,
and (3) π−1

n = n.
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3. If π−1
n = n, let α, γ and δ be the permutations appearing in the third case of the definition

of ψ (see Fig. 3). Again, (213)ψ(α) = (231)α, and

(213)ψ(π) = (213) γ ⊕ 1 + (213) δ
= (213)ψ(α),

and thus (213)ψ(π) = (231)α = (231)π.

3.3 Equidistribution of (213, des, 12 ) and (213, des, 12 ) on Sn(132): bijection µ

Based on the previously defined bijection ψ we give a mapping µ on Sn(132) and show that it
is a bijection, and Theorem 3 proves the desired equidistribution.

Expressing in two different ways the major index of a permutation, Lemma 2 in [9] (see
also Corollary 14 in [10]) shows that any (not necessarily 132-avoiding) permutation π satisfies
(213+21 )π = (231+21)π. Actually, (21)π is equal to desπ, and the previous relation becomes

(213 + 21 )π = (231 + des)π. (1)

Lemma 1. For any permutation π, we have (213)π ⊕ 1 = (231 + des)π.

Proof. From relation (1) it follows that (213+ 21 )π⊕ 1 = (231+ des)π⊕ 1, and the statement
holds by considering that (21 )π ⊕ 1 = 0, desπ ⊕ 1 = desπ, and (231)π ⊕ 1 = (231)π.

In the proof of the next theorem we will use the following fact, which is easy to understand.

Fact 3. For any permutation π, we have (213)π ⊕ 1 = (213 + des)π.

The mapping µ on Sn(132) is recursively defined as follows: if π is the empty permutation,
then µ(π) = π; and if π ∈ Sn(132), n ≥ 1, with π = α ⊖ (β ⊕ 1) for some 132-avoiding
permutations α and β, then

µ(π) = µ(α)⊖ (µ(ψ(β))⊕ 1),

where ψ is the bijection define in Subsection 3.2. See Fig. 4 for this recursive construction.

π=

α

β

s

→

µ(α)

µ(ψ(β))

s

=µ(π)

Figure 4: The recursive definition of µ(π).

Since ψ is a bijection on Sn(132), n ≥ 0, it follows that µ(π) avoids 132 whenever π does
so, and thus µ(π) ∈ Sn(132) for any π ∈ Sn(132). With the notations above, it is clear that
(12 )µ(π) = (12 )π = |β| and considering again the bijectivity of ψ, by induction on n it follows
that µ is injective, and thus bijective.

Theorem 3. If π ∈ Sn(132), then

(213, des, 12 )µ(π) = (213, des, 12 )π.
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Proof. Clearly, (12 )µ(π) = (12 )π, and the remaining of the proof is by induction on n.
Obviously, the statement holds for n = 0, and consider π = α ⊖ (β ⊕ 1) ∈ Sn(132), n > 0, for
some 132-avoiding permutations α and β.

The bijection µ preserves des statistic. Indeed, using the Iverson bracket notation, i.e.
considering [|α| 6= 0] equal to 0 (resp. 1) if α is empty (resp. not empty), we have

desµ(π) = desµ(α)⊖ (µ(ψ(β))⊕ 1)
= desµ(α) + desµ(ψ(β)) + [|α| 6= 0],

and by the induction hypothesis it follows that desµ(π) = desα+ desψ(β)+ [|α| 6= 0], and since
ψ preserves des we have desµ(π) = desα+ desβ + [|α| 6= 0] = desα⊖ (β ⊕ 1) = desπ.

Finally, we show that (213)µ(π) = (213)π. Indeed, (213)µ(π) = (213)µ(α)⊖(µ(ψ(β))⊕1) =
(213)µ(α) + (213)µ(ψ(β))⊕ 1, and

(213)µ(π) = (213)µ(α) + (213)µ(ψ(β)) + desµ(ψ(β)) (by Fact 3)
= (213)α+ (213)ψ(β) + desβ (by the induction hypothesis

and µ and ψ preserve des)
= (213)α+ (231)β + desβ (by Theorem 2)
= (213)α+ (213)β ⊕ 1, (by Lemma 1)

thus (213)µ(π) = (213)α⊖ (β ⊕ 1) = (213)π.

3.4 Equidistribution of (231, 312, des) and (312, 231, des)

It is easy to see that the inverse of a permutation (defined at the end of Section 2) has the
property that, if π = α⊖ (β ⊕ 1), then π−1 = (β−1 ⊕ 1)⊖ α−1 (see Fig. 5).

As mentioned before, the inverse of a vincular pattern is no longer a vincular pattern, however
we have the following result.

Proposition 3. If π ∈ Sn(132), then (231, 312, des)π−1 = (312, 231, des)π.

Proof. Trivially, the statement holds for n = 0, and consider π = α⊖ (β ⊕ 1) ∈ Sn(132), n > 0,
for some 132-avoiding permutations α and β.

If α is empty, then desπ−1 = desβ−1 and desπ = desβ; otherwise, desπ−1 = desβ−1 +
desα−1 + 1 and desπ = desα + desβ + 1. In both cases, by induction on n it follows that
desπ−1 = desπ.

An occurrence of 231 in π−1 can be found either in β−1, or in α−1, or when α and β are
not empty, has the form abc with ab two consecutive increasing symbols in β−1 ⊕ 1 and c a
symbol of α−1. Similarly, an occurrence of 312 in π can be found either in α, or in β, or
when α and β are not empty, has the form abc with a a symbol of α and bc two consecutive
increasing symbols in β ⊕ 1. Thus, (231)π−1 = (231)β−1 + (231)α−1 + ( 21 )(β−1 ⊕ 1) · |α−1|
and (312)π = (312)α + (312)β + |α| · ( 21 )(β ⊕ 1). But (β ⊕ 1)−1 = β−1 ⊕ 1 is a 132-avoiding
permutation, and ( 21 )γ = ( 21 )γ−1 for any 132-avoiding permutation. Finally, by induction on
n it follows that (231)π−1 = (312)π.

Since π 7→ π−1 is an involution on Sn(132), it follows that (312)π−1 = (231)π, and the
statement holds.
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π=

α

β

s

→
β−1

α−1

s

=π−1

Figure 5: The recursive construction of π−1, for π ∈ Sn(132), n ≥ 1.

4 Conclusions

We have shown bijectively the joint equidistribution on the set Sn(132) of some length-three
vincular patterns together with other statistics. In particular, for the sets of vincular patterns
{231, 213, 213} and {231, 312}, we showed that the patterns within each set are equidistributed
on Sn(132). By applying permutation symmetries, other similar results can be derived. For
instance, from the equidistribution of 213 and 213 on Sn(132) (belonging to the first set, see
Subsection 3.3) it follows, by applying

• the reverse operation, the equidistribution of 312 and 312 on Sn(231),

• the complement operation, the equidistribution of 231 and 231 on Sn(312), and

• the complement and the reverse operations (in any order), the equidistribution of 132 and
132 on Sn(213).

Moreover, computer experiments show that, up to these two symmetries, the patterns in {231, 213, 213}
and those in {231, 312} are the only length-three proper (not classical nor consecutive) vincular
patterns which are equidistributed on a set of permutations avoiding a classical length-three
pattern.
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