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ABSTRACT

Baxter studied a particular class of permutations by considering fixed points of the composite of com-
muting functions. This class is called Baxter permutations. In this paper we investigate the number
of 123-avoiding Baxter permutations of length n that also avoid (or contain a prescribed number of
occurrences of) another certain pattern of length k. In several interesting cases the generating function
depends only on k and is expressed via the generating function for the Padovan numbers.
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1. INTRODUCTION

Pattern avoidance. Let &, denote the set of permutations of {1,2,...,n}, written in one-line
notation, and suppose o € &, and 7 € & be two permutations. We say that « contains 7 if there
exists a subsequence 1 < iy < 42 < -+ < 4 < n such that (a;,,..., ;) is order-isomorphic to 7;

in such a context 7 1s usually called a pattern. We say that a avoids 7, or 18 T-avoiding, if such a
subsequence does not exist. The set of all 7-avoiding permutations in &, is denoted by &, (7). For an
arbitrary finite collection of patterns 7', we say that a avoids T"if « avoids all 7 € T'; the corresponding

subset of &, is denoted by &, (T).

Generating trees. A colored integeris an integer or an integer with a subscript which is called color.
For a colored integer e, |e| denotes the value of e regardless its color and |e| = e if e is simply an
integer. For instance |24 = 2 and |3]| = 3.

A succession rule on a set of colored integers X is a formal system consisting of a root eg € ¥ and a
set of productions of the form

{(k) ~ (e (k))(ea (k) - - (egn (k) brex
with each e;(k) € ¥, 1 < ¢ < |k|, which explain how to derive, for any given label k € X, its |k|
successors, (e1(k)), (e2(k)), ..., (ejx)(k)). In this context X is called the set of labels.

A generating tree induced by a succession rule is an infinite tree with the root (at level zero) labeled
by (eg). Each node labeled by (k) has |k| successors with the labels given by the production rules.
A tree is a generating tree for a class of combinatorial objects if there exists a bijection between the
objects of size n and the nodes at level n — 1 in the tree. Notice that a class of combinatorial objects
may have several generating trees. If a class of combinatorial objects has a generating tree induced
by a succession rule on a finite set of labels then the generating function of the number of objects of a
given size is a rational function L (see for instance [11, pp. 242] and [12]). In addition if the degree of
g equals the cardinality of the set of labels then this cardinality is minimal, i.e., there is no succession
1
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rule on a smaller set of labels inducing the same class of objects. In this case the succession rule is
called minimal.

The Padovan sequence p, [7] is given by p, = pn—2 + pn—3, n > 3, with the initial values py = 1 and
p1 = p2 = 0. The first terms of this sequence are

1,0,0,1,0,1,1,1,2,2,3,4,5,7,9,12,16, 21,28, 37,49, 65,86, 114, 151.

Baxter [1] studied a particular class of permutations by considering fixed points of the composite of
commuting functions. This class is called Bazter permutations. A permutation m € &, is called a
Bazter permutation if it satisfies the two following conditions for all 1 <a <b< e < d < n,

if g +1=my and 7 > wg then 7. > my;
ifmy+1=m, and 7w, > m, then 7 > 7,.

The Baxter permutations can be defined as the set of permutations in &,, avoiding 2413 and 3142,
the patterns being yet permitted when they are parts of 26314 and 41352 in the permutation, respec-
tively; this class of pattern avoiding permutations is denoted by &, (25314,41352), In [3] it is proved
analytically that the number of Baxter permutations in &, is given by

« (PG GL)

2 ) )

A bijective proof of this formula is given in [10]. Later, several papers enumerate number of Baxter
permutations that satisfy certain set of conditions, as follows. We say that 7 = myms-- -7, is an
alternating permutation if 1t satisfies my < 79 > w3 < mq4 > ---. A permutation 7 is said to be double
alternating permutation if m and 7~! are alternating permutations. In [4] (see also references therein)
it is proved that the number of alternating Baxter permutations of length 2n and 2n+1 is given by C?2
and C),,C)y1; respectively, where C,, = n%l_l(zn”) is the nth Catalan number. In [8] (see also references
therein) is counted the number of double alternating Baxter permutations in &, and proved that this
number is given by C,.

In this paper we consider the case of 123-avoiding Baxter permutations that avoid other patterns, or
the case of 123-avoiding Baxter permutations containing a given number of occurrences of another
pattern of length k. In several interesting cases the generating function depends only on k& and is
expressed via Padovan numbers.

The paper is organized as follows. The case of Baxter permutations avoiding both 123 and one
or two length k patterns is treated in Section 2. We describe a simple structure for the set of
Baxter permutations avoiding 123. This structure gives a complete answer for several interesting
cases, including the patterns 12---k and r = m(m — 1) ---1k(k — 1) --- (m + 1). The case of Baxter
permutations avoiding 123 and containing 7 exactly r times is treated in Section 3. The case of
Baxter permutations avoiding the pattern 123 and containing a certain generalized pattern is treated
in Section 4.

Most of the explicit solutions obtained in what follows involve generating trees and the generating
function for the Padovan numbers.
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2. BAXTER PERMUTATIONS AVOIDING 123 AND ANOTHER PATTERN

Let B, (n) be the set of Baxter permutations in &, (123, 1), with B(n) = B (n), and b, (n) be its car-
dinality. We denote by B; () the corresponding generating function, that is, By (2) =" 5, b-(n)z".
The following proposition is the base for all the other results in this section. B

Proposition 2.1. Let m € B(n), then

(a) m= (n,n') where 7' € B(n —1);
(b) or there exist 1 < j<i<n—1such thatm= (i,i—1,....5,n,n—1,...,i4+ 1,7"), where
meB(G-1).

Proof. Let m € B(n) be a Baxter permutation such that m; = ¢. If ¢ = n then the proposition holds
immediately by definitions, so we assume that 1 < ¢ <n —1. Let 7y = n. Since 7 is a 123-avoiding

permutation we get that 7 contains the subsequence (n,n—1,...,i+1) and 71 > --- > m4_1. On the
other hand, 7 is a Baxter permutation, there = has the form (¢,i—1,...,i—(d—2),n,n—1,... i+1,7')
where 7’ is a Baxter permutation in B(i 4+ 1 — d), hence the second case holds. O

2.1. 123-avoiding Baxter permutations. As an application for Proposition 2.1 we get the gener-
ating tree and the number of 123-avoiding Baxter permutations in &,,.

Proposition 2.2. The generating tree for the set of Baxter permutations in B(n) is given by

21)
1)
2)
)

Proof. Let m € B(n). If 7y = n, then we label m by (21); if m2 = n, then we label 7 by (3); and by
(22) otherwise. When a permutation 7 € B(n) is labeled by (2;) it has two successors: (n+ 1, ) and
(n,n+ 1,ma,...,my,); they are labeled by (21) and (3), respectively. When = is labeled by (3) it has
the form (i,n,n—1,...,4+ 1,7') and has three successors: (n+ 1,7), (i+1,4,n+ 1,n,...,i+2,7)
and ({,n+ 1,n,...,i+ 1,7'); they are labeled by (2;), (22) and (3), respectively. When = is labeled
by (22) it has the form (4,4 —1,...,5,n,n—1,..., i+ 1,7’), i > j, and has two successors: (n+ 1,7)
and (i4+1,4,...,5,n+1,n,...,i+2,7'); they are labeled by (21) and (22), respectively. Moreover, the
unique Baxter permutation in %(1) is labeled by (2;) and any Baxter permutation in B(n), n > 1,
can be uniquely obtained from a Baxter permutation in B(n — 1) by one of the three transformations
above. d

root
(2.1) rule g
(3

~
~
~

Theorem 2.3. The generating function for the number of 123-avoiding Baxter permutations in B(n)
1s given by
(1—=)
B = .
& () 1—3x+ 222 — 23
In other words, the number of 123-avoiding Baxter permutations in B(n) is given by pan4s3, the
(3n + 3)th Padovan number.

Proof. First proof. By Proposition 2.1, we have two possibilities for an arbitrary Baxter permutation
7w € B(n). Let us write an equation for bg(n). The contribution of the first case is bg(n — 1) and the
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contribution of the second case for all 1 < j <i<n—11is by(j —1). Therefore, for all n > 1,

n—1 1

(2.2) bg(n):bg(n—l)—l—ZZbg(j—l).
So, ba(n) —ba(n—1)=by(n—1)+ Z;L:_(? be(7), which implies that
bo(n) =3bg(n —1) — 2bg(n — 2) + be(n — 3).

Besides, bz (0) = by (1) = 1 and by (2) = 2, hence by () = _ (=2

1-3¢x+4+2x2—g3"
Now let us prove that bg(n) = papys for all n. By using the definition of Padovan sequence we get
P3n+3 = P3n+1+ P3n = P3n + P3n—1 1 P3n—2 = 2P3n + P3n—1 — P3n—3 =

= 3pan — Pan—3 — (Pan — Pan—3) + (Pan—1 — Pan—3) =

= 3p3n — P3n—3 — P3n—2 + P3n—4 = 3P3n — P3n—3 — P3n—5 =

= 3psn — 2P3n—3+ (P3n—3 — P3n—5) = 3P3n — 2P3n—3 + P3n—s,
hence, by induction on n we get the desired result.
Second proof. The number of (21)-labeled nodes at level n > 1 in the generating tree induced by
(2.1) (considering the root at level 0) equals the total number of nodes at level n — 1, which in turn

equals the number of Baxter permutations in B(n). The transfer matrix of the succession rule (2.1)
is (see for instance [5])

1
1
11

and the number of (21)-labeled nodes at level n, or equivalently, the number of length n Baxter
permutations avoiding 123 has the generating function

_det(/ —xA:1,1)

0 1
A= 10
1

B =
o () det(I — zA)
where (A :4,j) denotes the matrix obtained by removing the ith row and jth column in A (see [11,
pp. 242]), and by simple calculation the desired result holds. a

2.2. A pattern r=m---1k---(m +1). Denote the permutation m---1k---(m 4+ 1) by r[m,k].
Now, let us consider the case 7 # @. We start by the following example.

Example 2.4. Proposition 2.1 for m = 132 yields byza(n) = 2b1z2(n — 1). Besides, byz2(1) = 1, hence
bisa(n) =21 for alln > 1.

The case of varying k is more interesting. As an extension of Example 2.4 let us consider the case
7 = 7[m, k]. The next theorem shows that the corresponding generating function does not depend on
m.

Theorem 2.5. For k > 3 and 1 < m < k — 1 the cardinality of the set of Baxter permutations in
B(n) avoiding T[m, k] does not depend on m.

Proof. Let k>3 and 1 < m < k—1, and let 7(Y) = 7[m — 1,k] and 7(*) = 7[m, k]. We construct
a bijection 7 < 7 from the set of Baxter permutations in B(n) into itself. The permutation 7 is
defined recursively from 7 by 7 = (n, 7;’) if # = (n,7'), where 7/ = 79 - - - . Otherwise 7 has the form
(4,i=1,...,5,n,n—=1,..i+1,7"), where 7’ = mp_jqomp_jps---mp. I (4,i—=1,... j,n,n—=1,...,i4+1)
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e contains both 7() and 7(?) or contains neither () nor 7(2), then # = (i,i—1,...,4,n,n—
1,...,i+1,7).

e contains 7(2) but not (1), then 7 = (m+j—2,...,j,n,n—1,...,i+1,i,m+j—1,7;’). In
this case k —m = n — i and 7 contains 7(!) but not (2.

e contains 7(Y) but not 7?) then # = (n—k+m,...,5,i—1,....j,n,n—1,.. .,n—k—i—m—l—l,%’).
In this case m —1 = j — i+ 1 and # contains 7(2) but not 7(1),

Clearly, 7 < 7 is a bijection from B(n) into itself and it transforms a permutation avoiding (2
into one avoiding 71 and vice versa. Its restrictions B, () (n) 2B, (n) and B.q) (n) 3B, (n) are
bijections, inverses of each other. a

The restriction to Byy...32(n) of the generating tree induced by (2.1) is given by the next proposition.

Proposition 2.6. The generating tree for the set of Baxter permutations in Byy..32(n) is given by

e if k=3
root (21)
(2.3) rule  (21) ~ (21)(22)
(22) ~ (21)(22)
o ifk>3
root  (24)
rule  (21) ~  (21)(31)
(2.4) (25) ~ (21)(22) |
(3p) ~ (21)(22)(Bpy1) Il p <k =3,
’ (20)(2)(22)  if p=k—3.

Proof. For k = 3, by Proposition 2.1, the Baxter permutations in Bj32(n) have the form (n,#’)
or (n—1,...,j,n,7). We label the first ones by (21) and they have two successors: (n + 1,n,7’)
and (n,n 4+ 1,7'), which are labeled by (2;) and (23), respectively. The permutations of the form
(n—1,...,4,n,7') are labeled by (22) and they have also two successors: (n 4+ 1,7) and (n,n —
1,...,4,n+ 1,7'), which again are labeled by (21) and (22), respectively.

For k > 3, (2.4) results from (2.1) by limiting to & — 2 the length of the sequence n,n—1,...,i4+ 1
in each Baxter permutation 7 in B(n) with m # n. O

Theorem 2.7. Let k>3 and 1 <m <k —1. Then

1—=
Br[m,k](x): 1—9p — 23 — g4 — ... _ ph—1~

Proof. First proof. Let 7 = 7[m, k]; by Proposition 2.1 we have two possibilities for an arbitrary

Baxter permutation m € B, (n). Let us write an equation for b, (n). The contribution of the first case

is b;(n — 1). The contribution of the second case, if 1y = ¢ <m — 118 b,(0) + b, (1) +---+ b (i — 1),

ifm<m=i<n—(k—m)equals b, (i+1—m)+b:(i+2—m)+---+b;({— 1), otherwise (that is,

n—(k—m)+1<m=i<n—1)equals b;(0) + b,(1) +---+ b;(¢ — 1). Therefore, for all n > 1,
m—2 1

n—(k 3 n—2 )
be(m) =be(n— 1)+ D be(i)+ Soob()+ D D b)),

—-m)—1
i=0 j=0 i=m—1 j=i—-m+2 i=n—(k—m)j=0
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80 by(n)—br(n—1)=b(n—1)+ Z;;r?—(k—m)—m+1 b-(j), which implies that

n—3

br(n) =2b,(n— 1)+ > b.(j).

j=n—-k+1

Besides, b;(n) = papys for all n < k — 1 (see Theorem 2.3), hence we multiply by 2" and add over all
n > k to get the desired result.

Second proof. By Theorem 2.5 it is enough to prove the result for Blk(k—1)~~2(l‘) and k£ > 3. When
k = 3, the transfer matrix of the system (2.3) is

11
=[]
and so Biga(x) = 11__23. When k > 3, the transfer matrix of the system (2.4) is
(1 0 1 0 0 07
110 0 0 0
1 1.0 1 0 0
A=|1 10 0 1 0
110 0 0 ... 1
|1 2 0 0 0 ... 0] (e 1) x (—1)
and using the same techniques as in the second proof of Theorem 2.3 the result holds. |

As a remark, if we fix m and let & — oo, then Theorem 2.7 yields that the number of Baxter
permutations in B(n) is given by psnis, the (3n 4+ 3)th Padovan number (see Theorem 2.3).

Let us now consider simultaneous avoidance of two length k patterns of the form m---21k--- (m +
2)(m + 1) and, as previously, we denote such a pattern by 7[m, k]. We show that the corresponding
generating function depends only on the length of patterns.

Theorem 2.8. Let k> 3 and 1 < m < k — 1. The number of 123-avoiding Bazter permutations in
B(n) avoiding both patterns V) = r[m — 1,k] and 7* = 7[m, k] does not depend on m.

Proof. Let m < k—2 and 7 = r[m + 1,k]. We construct a bijection 7 < 7 from B, ,@(n)
to B ) ;= (n) defined by # = m if 7 does not contain 73 and recursively as follows otherwise.
If # = (n,n) then & = (n,ﬂ:’). Otherwise 7 has the form (¢,i—1,...,5,n,n—1,...i4+ 1,7). If
(ii—1,....jmn—1,... i+1)

e does not contain 73, then 7# = (3, —1,...,5,n,n—1,... i+ 1,7{")

e contains 7®, then 7 = (m—24jm—=34+4,...,4n, .., i+1,n—14j,7).
Thus, m < 7 is invertible and so it is a bijection between B_q) . (n) and B () ;@) (n). O
The generating trees induced by the following succession rule are subtrees of that induced by (2.3) and
(2.4), respectively, which in turn are subtrees of (2.1). Also, all of these succession rules are minimal.

Proposition 2.9. The succession rules for the set of Baxrter permutations in Bi1y..3221%..3(n) are
given by
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o ifk=3
root  (2)
(2.5) rule (2) ~ (2)(1)
(1)~ (2)
o if k>3
root  (24)
rule (1) ~ (21
21) ~ (21)(31
(2'6) 522; s EQ 2

Proof. For k = 3, by Proposition 2.1, the Baxter permutations in B132 213(n) have the form (n, ')
or (n — 1,n,7"). The first ones are labeled by (2) and they have two successors: (n + 1,n,7’) and
(n,n+1,7"). The second ones are labeled by (1) and they have one successor: (n+ 1, ).

The succession rule (2.1) can produce sequences (é,¢—1,...,j,n,n—1,...,i4+ 1) of arbitrary length
and it makes possible the creation of the patterns 1k---32 and 21k ---3. So, for & > 3 the succession
rule (2.6) results from (2.1) by imposing, in each 7 produced by (2.1) with w1 # n, that the length of
the sequence (4,7 —1,...,5,n,n—1,...,4+ 1) does not exceed k — 1 whenever n —i =k — 2. a

Theorem 2.10. Let k > 3 and 1 < m < k — 1. The number of 123-avoiding Baxter permutations in
B(n) avoiding both patterns t[m — 1, k] and t[m, k] is given by
o ifk=3 L

P l—z—z27

o ifk>3 1

P I—2p—gi—gi— . —gk—Llygk "

Proof. For k = 3 the the Baxter permutations in B33 213(n) are exactly the permutationsin &, (123, 132, 213)
and they are counted by the Fibonacci numbers, see [9].

For k£ > 3, by Theorem 2.8 it is enough to prove the result for m = 2. In this case the transfer matrix
of the system (2.6) is

10 0 1 0 O 0
1 0 0 0 0 O 0
1 01 0 0 O 0
110 0 1 0 0
A=11 100 0 1 0
1 1.0 0 0 O 1
|1 1.1 0 0 0 ... Lk
and, again, by calculations the result holds. a

2.3. A pattern 7 = (k— 1)k(k — 2) - --21. Again, by Proposition 2.1 it is easy to see that the num-
ber of Baxter permutations in Ba31(n) is given by (g) +1 for all n > 0. Indeed, Bagi(n) consists of the
permutation n(n—1)---1 and (g) permutations of the form n(n—1)---ji(i—1)---1(j—=1)---(i+1)
with 1 < < j < n. The case of varying k is more interesting. As an extension of the above result let
us consider the case of 7 = (k — 1)k(k —2)---21.
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Theorem 2.11. Let k > 3; the number of Baxter permutations b(k—l)k(k—2)~~21(n) 15 given by a
polynomial of degree 2 with coefficients in Q for all n > 2(k — 3).

Proof. Let 7= (k—1)k(k—2)---21 and let us define b, (n;41,42,...,4mn) to be the number of Baxter
permutations m € B, (n) such that myma -+ 7 = d1492 - 4. In view of Proposition 2.1 it is easy to
see that

n—1
bT(n):bT(n;n)—l—Zb n;i,1— —|—Zb n;i,n)
i=2

By definitions we get by (n;é,i — 1) = by(n — 1;¢— 1) and bT( ;n) = br(n— 1), so by the fact that
Z;}Il br(n;j) = by (n) we have

n—1

br(n) = 2br(n — 1) = br(n —2)+ Y br(n;i,n).

i=1
On the other hand, in [6] it is proved that no sequence of length d > (p—1)(¢— 1) avoids both 12---p
and ¢(¢ — 1)---1. So, by using Proposition 2.1 we get that b,(n;é¢,n) = 0 for all i — 1 > 2(k — 3)
since the sequence mp_iy2, Tn_its, ..., Ty contains at least 123 or (k—2)(k—3) - - 1. Therefore, there
exists a constant ¢ such that

br(n) =2b;(n—1)—by(n —2) + ¢,
for all n > 2(k — 3). Thus, if p = b, (2(k — 3) — 2) and ¢ = b-(2(k — 3) — 1), then by induction on n

we can state that
n+2
b-2(k=3)+n)=q(n+2)—pn+1)+e 5 |
for all n > 0, as required. a

As an application of Theorem 2.11 and using the initial values of the sequence b(k—l)k(k—2)~~21(n) we
get the following.

Corollary 2.12.

(1) Foralln >0, bazi(n) = 5(n—1)+1;
(2) Foralln > 2, bgyo1(n) = 37(71 —3)+5;

(3) For alln >4, bysza1(n) = bn

( ) For alln Z 6, b564321( ) %(3571 — 321) —|— 397.

We note that for all 7 as in the previous theorem, possibly except for finitely many of them, there is no
minimal succession rule for the set of Baxter permutation in B(n) avoiding 7. Indeed, the generating
function of the set under consideration is rational with the denominator a polynomial of degree two,
and there exist finitely many succession rules on a set of two labels.

2.4. Other statistics. Another application for Proposition 2.1 is to consider statistics on 123-
avoiding Baxter permutations according to the number of rises (number of rises for a permutation =
is equal to |{i|m; < m;41}]) or left-to-right maxima (number of left-to-right maxima for a permutation
7 is equal to |{i|m; > m; for all j < i}]).

Theorem 2.13. The number of Baxter permutations in B(n) having r rises is (”;;T) In other

words, the generating function for the number of Baxter permutations in B(n) having r rises is given
27‘

by =y
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Proof. By Proposition 2.1 we get that for each Baxter permutations in B(n) with r rises corresponds
an integer sequence {z;}; 3”’1 with z3; < 341 < #3542 < zzjpz forall j,0<j <r—1, and zg =0,
T3y < T3pp1 =N, TS bljectlvely related to {z;} by

oﬂi2n+1—iifl‘3j+1§i§l‘3j+2
07Ti<n+1—iifl‘3j+2<i§l‘3j+3
e m>n+1—tif x3; <@ <3541

and there are exactly ("]") such sequences {z;}. O

A 123-avoiding Baxter permutation in 9B(n) has either one or two left-to-right maxima.

Theorem 2.14. The number of 123-avoiding Bazter permutations in B(n) having one left-to-right
mazima is given by pa, for all n > 1, and the number of 123-avoiding Baxter permutations in B(n)
having two left-to-right mazima s given by pspy3 — psn for all n > 2, where p,, s the mth Padovan
number.

Proof. If m# € B(n) is a 123-avoiding Baxter permutation with one left-to-right maxima then © =
(n, ') and the number of such permutations is by (n — 1).

If 7 has two left-to-right maxima then 7 = (¢,i—1,--- ,j,n,n—1,...,i+1,7'). Foreach j, 2 <j <n,
there are j—1 sequences (4,i—1,...,j,n,n—1,...,74+1) and by (j—1) permutations . So, the number
of permutations 7 is Z?:z(j — )by (j — 1) and, as in relation (2.2), it equals bg(n) — bg(n —1). O

3. 123-AVOIDING BAXTER PERMUTATIONS CONTAINING ANOTHER PATTERN

Let by (n) be the number of Baxter permutations in B(n) containing 7 exactly » times. We denote
by Br.(z) the corresponding generating function, that is, B;.,(z) = >, br:r(n)2”. Using similar
arguments as in the proof of Theorem 2.7, along with Proposition 2.1, we have

Lemma 3.1. Let k>3, r >0, and let T = 7[m, k] where 1 <m < k—1. Foralln > 1,

bT,r( )—bTr +Zzb7’7‘ = J+1 k"_’)(j)'

i=1 j=1

3.1. The case r =1 and 7 = 7[m, k]. Lemma 3.1 yields for » = 1 that

m—2 1
bra(n) =bra(n—1)+bro(n—k)+ ZO Z b1 (5)+
n—(k—m)—1 ; = n

+ Y > bm(j)fz; ; 103),

i=m—1 j=i—-m+2

SO
n—3
bria(n) —bra(n—1) =bra(n—1) + bro(n — k) —brp(n —k — 1) + Z br1(7),
j=n—-k+1
equivalently
n—3
bra(n) =2br1(n— 1) +bro(n—k)—bro(n—k—1)+ > br(n).
j=n—-k+1

Besides, by.1(n) = 0 for all n < k — 1, hence by using Theorem 2.7 we get
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Theorem 3.2. Let k>3 and 1 < m <k —1. Then
xk(l—x)z
1—22— 2% —pt— . —gh-1)2"

BT[m,k];l ($) = (

3.2. The pattern 7 = 132. In the current subsection we consider the case 7 = 132 and r > 0. As
an application for Lemma 3.1 we have the following result.

Theorem 3.3. We have

(1) bigao(n) = =L foralln>1;
(i) biz2.1(n) =n-2"7°, for all n >4,
(iii) biza2(n) = (n? + 13n —20)2"71° foralln > 7.

Proof. By Lemma 3.1 for »r = 0, k = 3, and m = 1 we get bizs.0(n) = b1s20(n — 1) + Z?;OZ b132:0(7)-
Besides, b132,0(0) = 1, hence (i) holds.

Again, by Lemma 3.1 for r = 1, k = 3, and m = 1 we get

n—2
biz2;1(n) = biz2.1(n — 1) + bizao(n — 3) + Z b132:1(7).
7=0
Besides, b132.0 = 0, hence the rest is easy to check.
Similarly as the first two cases, (iii) holds. d

Remark 3.4. In addition, Lemma 3.1 can be used to derive other examples for the choice of v and T
but we sufficient by the above two examples.

4. BAXTER PERMUTATION AVOIDING 123 AND GENERALIZED PATTERN WITHOUT DASHES

Generalized patterns are introduced in [2]; they can impose the requirement that two adjacent letters
in a pattern must be adjacent in the permutation. We write a classical pattern with dashes between
any two adjacent letters of the pattern, say 1342, as 1-3-4-2; and, for example, the generalized pattern
24-3-1 means that if this pattern occurs in the permutation m, then the letters in the permutation
7w corresponding to 2 and 4 are adjacent. For example, the permutation # = 35421 has only two
occurrences of the pattern 23-1, namely the subsequences 352 and 351, whereas 7 has four occurrences
of the pattern 2-3-1, namely the subsequences 352, 351, 342 and 341.

Here we count a generalized pattern of length & without dashes in 1-2-3-avoiding Baxter permutations
in B(n). Let us consider the case of a generalized pattern r = r[m, k] (without dashes) of length k.

Theorem 4.1. Let k > 3 and 1 < m < k—1. The generating function for the number of 1-2-3-avoiding
Bazter permutations in B(n) containing the generalized pattern t[m, k| without dashes exactly r times
1s given by

xkr

(1—x)r=1(1—2c — a3 — .. — gh=-1)r+1’

Proof. For 1 < m < k — 1 the transformation 7 < 7 given in Theorem 2.5 maps bijectively an
occurrence of 7[m, k] into one of 7[m — 1,k] and so it is enough to prove the statement for the
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particular pattern 7 = (k — 1)---21k. Using the same argument as in the proof of Theorem 2.7 we
get

brrln) = byo(n = 1)+ 5 3 b (G = 1+

i=1j=1
n—1 i—k+1 ) i—1 .
+ Z Z bT;r—l(] - 1) + Z bT;r (.7 - 1) ’
i=k—1 j=1 Jj=i—k
therefore,

bry(n) =3b;r(n—1) = 2b;(n—2)+brp(n —3) —br(n—k)+ brp_a(n— k).

Hence, if multiplying by «” and summing over all n > 1 then we have

k
x
BT.T - BT'T— )
r(®) (1—z)(1—-2z—a3—a*— - —gk-1) " 1(z)
for all » > 1, together with B, (z) = 1—2x—x3_1;4x_..._xk_1~ .

As a consequence of Theorem 4.1 we have the following result.

Theorem 4.2. The number of Barter permutations in B(n) containing the generalized pattern 132
(or 213) exactly r times is given by

niryl_?”_i i+tr—2\/n—-3r—i+r
P r—2 r '
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