
RESTRICTED 123-AVOIDING BAXTER PERMUTATIONS AND THE PADOVANNUMBERSTOUFIK MANSOUR AND VINCENT VAJNOVSZKIAbstractBaxter studied a particular class of permutations by considering �xed points of the composite of com-muting functions. This class is called Baxter permutations. In this paper we investigate the numberof 123-avoiding Baxter permutations of length n that also avoid (or contain a prescribed number ofoccurrences of) another certain pattern of length k. In several interesting cases the generating functiondepends only on k and is expressed via the generating function for the Padovan numbers.2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 11B831. IntroductionPattern avoidance. Let Sn denote the set of permutations of f1; 2; : : : ; ng, written in one-linenotation, and suppose � 2 Sn and � 2 Sk be two permutations. We say that � contains � if thereexists a subsequence 1 � i1 < i2 < � � � < ik � n such that (�i1 ; : : : ; �ik) is order-isomorphic to � ;in such a context � is usually called a pattern. We say that � avoids � , or is � -avoiding , if such asubsequence does not exist. The set of all � -avoiding permutations in Sn is denoted by Sn(� ). For anarbitrary �nite collection of patterns T , we say that � avoids T if � avoids all � 2 T ; the correspondingsubset of Sn is denoted by Sn(T ).Generating trees. A colored integer is an integer or an integer with a subscript which is called color.For a colored integer e, jej denotes the value of e regardless its color and jej = e if e is simply aninteger. For instance j24j = 2 and j3j = 3.A succession rule on a set of colored integers � is a formal system consisting of a root e0 2 � and aset of productions of the form f(k) (e1(k))(e2(k)) � � � (ejkj(k))gk2�with each ei(k) 2 �, 1 � i � jkj, which explain how to derive, for any given label k 2 �, its jkjsuccessors, (e1(k)); (e2(k)); : : : ; (ejkj(k)). In this context � is called the set of labels.A generating tree induced by a succession rule is an in�nite tree with the root (at level zero) labeledby (e0). Each node labeled by (k) has jkj successors with the labels given by the production rules.A tree is a generating tree for a class of combinatorial objects if there exists a bijection between theobjects of size n and the nodes at level n� 1 in the tree. Notice that a class of combinatorial objectsmay have several generating trees. If a class of combinatorial objects has a generating tree inducedby a succession rule on a �nite set of labels then the generating function of the number of objects of agiven size is a rational function fg (see for instance [11, pp. 242] and [12]). In addition if the degree ofg equals the cardinality of the set of labels then this cardinality is minimal, i.e., there is no succession1



2 TOUFIK MANSOUR AND VINCENT VAJNOVSZKIrule on a smaller set of labels inducing the same class of objects. In this case the succession rule iscalled minimal.The Padovan sequence pn [7] is given by pn = pn�2 + pn�3, n � 3, with the initial values p0 = 1 andp1 = p2 = 0. The �rst terms of this sequence are1; 0; 0; 1; 0;1; 1; 1;2;2;3; 4; 5;7;9;12;16;21;28;37;49;65;86;114; 151:Baxter [1] studied a particular class of permutations by considering �xed points of the composite ofcommuting functions. This class is called Baxter permutations. A permutation � 2 Sn is called aBaxter permutation if it satis�es the two following conditions for all 1 � a < b < c < d � n,if �a + 1 = �d and �b > �d then �c > �d;if �d + 1 = �a and �c > �a then �b > �a.The Baxter permutations can be de�ned as the set of permutations in Sn avoiding 2413 and 3142,the patterns being yet permitted when they are parts of 25314 and 41352 in the permutation, respec-tively; this class of pattern avoiding permutations is denoted by Sn(25314; 41352), In [3] it is provedanalytically that the number of Baxter permutations in Sn is given byn�1Xj=0 �n+1j ��n+1j+1��n+1j+2��n+11 ��n+12 � :A bijective proof of this formula is given in [10]. Later, several papers enumerate number of Baxterpermutations that satisfy certain set of conditions, as follows. We say that � = �1�2 � � ��n is analternating permutation if it satis�es �1 < �2 > �3 < �4 > � � � . A permutation � is said to be doublealternating permutation if � and ��1 are alternating permutations. In [4] (see also references therein)it is proved that the number of alternating Baxter permutations of length 2n and 2n+1 is given by C2nand CnCn+1; respectively, where Cn = 1n+1�2nn � is the nth Catalan number. In [8] (see also referencestherein) is counted the number of double alternating Baxter permutations in Sn and proved that thisnumber is given by Cn.In this paper we consider the case of 123-avoiding Baxter permutations that avoid other patterns, orthe case of 123-avoiding Baxter permutations containing a given number of occurrences of anotherpattern of length k. In several interesting cases the generating function depends only on k and isexpressed via Padovan numbers.The paper is organized as follows. The case of Baxter permutations avoiding both 123 and oneor two length k patterns is treated in Section 2. We describe a simple structure for the set ofBaxter permutations avoiding 123. This structure gives a complete answer for several interestingcases, including the patterns 12 � � �k and � = m(m � 1) � � �1k(k � 1) � � � (m + 1). The case of Baxterpermutations avoiding 123 and containing � exactly r times is treated in Section 3. The case ofBaxter permutations avoiding the pattern 123 and containing a certain generalized pattern is treatedin Section 4.Most of the explicit solutions obtained in what follows involve generating trees and the generatingfunction for the Padovan numbers.



RESTRICTED 123-AVOIDING BAXTER PERMUTATIONS AND THE PADOVAN NUMBERS 32. Baxter permutations avoiding 123 and another patternLet B� (n) be the set of Baxter permutations in Sn(123; � ), withB(n) = B?(n), and b� (n) be its car-dinality. We denote by B� (x) the corresponding generating function, that is, B� (x) =Pn�0 b� (n)xn.The following proposition is the base for all the other results in this section.Proposition 2.1. Let � 2B(n), then(a) � = (n; �0) where �0 2B(n� 1);(b) or there exist 1 � j � i � n � 1 such that � = (i; i � 1; : : : ; j; n; n� 1; : : : ; i + 1; �0), where�0 2B(j � 1).Proof. Let � 2 B(n) be a Baxter permutation such that �1 = i. If i = n then the proposition holdsimmediately by de�nitions, so we assume that 1 � i � n � 1. Let �d = n. Since � is a 123-avoidingpermutation we get that � contains the subsequence (n; n� 1; : : : ; i+1) and �1 > � � � > �d�1. On theother hand, � is a Baxter permutation, there � has the form (i; i�1; : : : ; i�(d�2); n; n�1; : : : ; i+1; �0)where �0 is a Baxter permutation in B(i+ 1� d), hence the second case holds. �2.1. 123-avoiding Baxter permutations. As an application for Proposition 2.1 we get the gener-ating tree and the number of 123-avoiding Baxter permutations in Sn.Proposition 2.2. The generating tree for the set of Baxter permutations in B(n) is given by(2.1) root (21)rule (21)  (21)(3)(22)  (21)(22)(3)  (21)(22)(3)Proof. Let � 2 B(n). If �1 = n, then we label � by (21); if �2 = n, then we label � by (3); and by(22) otherwise. When a permutation � 2 B(n) is labeled by (21) it has two successors: (n+ 1; �) and(n; n+ 1; �2; : : : ; �n); they are labeled by (21) and (3), respectively. When � is labeled by (3) it hasthe form (i; n; n� 1; : : : ; i+ 1; �0) and has three successors: (n+ 1; �), (i+ 1; i; n+ 1; n; : : : ; i+ 2; �0)and (i; n+ 1; n; : : : ; i+ 1; �0); they are labeled by (21), (22) and (3), respectively. When � is labeledby (22) it has the form (i; i� 1; : : : ; j; n; n� 1; : : : ; i+ 1; �0), i > j, and has two successors: (n+ 1; �)and (i+1; i; : : : ; j; n+1; n; : : : ; i+2; �0); they are labeled by (21) and (22), respectively. Moreover, theunique Baxter permutation in B(1) is labeled by (21) and any Baxter permutation in B(n), n > 1,can be uniquely obtained from a Baxter permutation in B(n� 1) by one of the three transformationsabove. �Theorem 2.3. The generating function for the number of 123-avoiding Baxter permutations in B(n)is given by B?(x) = (1� x)21� 3x+ 2x2 � x3 :In other words, the number of 123-avoiding Baxter permutations in B(n) is given by p3n+3, the(3n+ 3)th Padovan number.Proof. First proof. By Proposition 2.1, we have two possibilities for an arbitrary Baxter permutation� 2B(n). Let us write an equation for b?(n). The contribution of the �rst case is b?(n� 1) and the



4 TOUFIK MANSOUR AND VINCENT VAJNOVSZKIcontribution of the second case for all 1 � j � i � n� 1 is b?(j � 1). Therefore, for all n � 1,(2.2) b?(n) = b?(n� 1) + n�1Xi=1 iXj=1 b?(j � 1):So, b?(n) � b?(n� 1) = b?(n� 1) +Pn�3j=0 b?(j), which implies thatb?(n) = 3b?(n � 1)� 2b?(n � 2) + b?(n� 3):Besides, b?(0) = b?(1) = 1 and b?(2) = 2, hence b?(x) = (1�x)21�3x+2x2�x3 .Now let us prove that b?(n) = p3n+3 for all n. By using the de�nition of Padovan sequence we getp3n+3 = p3n+1 + p3n = p3n + p3n�1+ p3n�2 = 2p3n + p3n�1 � p3n�3 == 3p3n � p3n�3� (p3n � p3n�3) + (p3n�1 � p3n�3) == 3p3n � p3n�3� p3n�2 + p3n�4 = 3p3n � p3n�3 � p3n�5 == 3p3n � 2p3n�3+ (p3n�3� p3n�5) = 3p3n � 2p3n�3+ p3n�6;hence, by induction on n we get the desired result.Second proof. The number of (21)-labeled nodes at level n � 1 in the generating tree induced by(2.1) (considering the root at level 0) equals the total number of nodes at level n � 1, which in turnequals the number of Baxter permutations in B(n). The transfer matrix of the succession rule (2.1)is (see for instance [5]) A = 24 1 0 11 1 01 1 1 35and the number of (21)-labeled nodes at level n, or equivalently, the number of length n Baxterpermutations avoiding 123 has the generating functionB?(x) = det(I � xA : 1; 1)det(I � xA)where (A : i; j) denotes the matrix obtained by removing the ith row and jth column in A (see [11,pp. 242]), and by simple calculation the desired result holds. �2.2. A pattern � = m � � �1k � � � (m + 1). Denote the permutation m � � �1k � � � (m + 1) by � [m; k].Now, let us consider the case � 6= ?. We start by the following example.Example 2.4. Proposition 2.1 for � = 132 yields b132(n) = 2b132(n� 1). Besides, b132(1) = 1, henceb132(n) = 2n�1 for all n � 1.The case of varying k is more interesting. As an extension of Example 2.4 let us consider the case� = � [m; k]. The next theorem shows that the corresponding generating function does not depend onm.Theorem 2.5. For k � 3 and 1 � m � k � 1 the cardinality of the set of Baxter permutations inB(n) avoiding � [m; k] does not depend on m.Proof. Let k � 3 and 1 < m � k � 1, and let � (1) = � [m � 1; k] and � (2) = � [m; k]. We constructa bijection � ,! ~� from the set of Baxter permutations in B(n) into itself. The permutation ~� isde�ned recursively from � by ~� = (n; ~�0) if � = (n; �0), where �0 = �2 � � ��n. Otherwise � has the form(i; i�1; : : : ; j; n; n�1; : : :; i+1; �0), where �0 = �n�j+2�n�j+3 � � ��n. If (i; i�1; : : : ; j; n; n�1; : : :; i+1)



RESTRICTED 123-AVOIDING BAXTER PERMUTATIONS AND THE PADOVAN NUMBERS 5� contains both � (1) and � (2) or contains neither � (1) nor � (2), then ~� = (i; i � 1; : : : ; j; n; n�1; : : : ; i+ 1; ~�0).� contains � (2) but not � (1), then ~� = (m + j � 2; : : : ; j; n; n� 1; : : : ; i + 1; i;m+ j � 1; ~�0). Inthis case k �m = n� i and ~� contains � (1) but not � (2).� contains � (1) but not � (2), then ~� = (n�k+m; : : : ; i; i�1; : : : ; j; n; n�1; : : : ; n�k+m+1; ~�0).In this case m � 1 = j � i+ 1 and ~� contains � (2) but not � (1).Clearly, � ,! ~� is a bijection from B(n) into itself and it transforms a permutation avoiding � (2)into one avoiding � (1) and vice versa. Its restrictions B�(2) (n) ~!B�(1) (n) and B�(1) (n) ~!B�(2) (n) arebijections, inverses of each other. �The restriction to B1k���32(n) of the generating tree induced by (2.1) is given by the next proposition.Proposition 2.6. The generating tree for the set of Baxter permutations in B1k���32(n) is given by� if k = 3(2.3) root (21)rule (21)  (21)(22)(22)  (21)(22)� if k > 3(2.4) root (21)rule (21)  (21)(31)(22)  (21)(22)(3p)  � (21)(22)(3p+1) if p < k � 3;(21)(22)(22) if p = k � 3:Proof. For k = 3, by Proposition 2.1, the Baxter permutations in B132(n) have the form (n; �0)or (n � 1; : : : ; j; n; �0). We label the �rst ones by (21) and they have two successors: (n + 1; n; �0)and (n; n + 1; �0), which are labeled by (21) and (22), respectively. The permutations of the form(n � 1; : : : ; j; n; �0) are labeled by (22) and they have also two successors: (n + 1; �) and (n; n �1; : : : ; j; n+ 1; �0), which again are labeled by (21) and (22), respectively.For k > 3, (2.4) results from (2.1) by limiting to k � 2 the length of the sequence n; n� 1; : : : ; i + 1in each Baxter permutation � in B(n) with �1 6= n. �Theorem 2.7. Let k � 3 and 1 � m � k � 1. ThenB� [m;k](x) = 1� x1� 2x� x3 � x4 � � � � � xk�1 :Proof. First proof. Let � = � [m; k]; by Proposition 2.1 we have two possibilities for an arbitraryBaxter permutation � 2B� (n). Let us write an equation for b� (n). The contribution of the �rst caseis b� (n� 1). The contribution of the second case, if �1 = i � m � 1 is b� (0) + b� (1) + � � �+ b� (i� 1),if m � �1 = i � n� (k�m) equals b� (i+ 1�m) + b� (i+ 2�m) + � � �+ b� (i� 1), otherwise (that is,n� (k �m) + 1 � �1 = i � n� 1) equals b� (0) + b� (1) + � � �+ b� (i � 1). Therefore, for all n � 1,b� (n) = b� (n� 1) + m�2Xi=0 iXj=0 b� (j) + n�(k�m)�1Xi=m�1 iXj=i�m+2 b� (j) + n�2Xi=n�(k�m) iXj=0 b� (j);



6 TOUFIK MANSOUR AND VINCENT VAJNOVSZKIso b� (n)� b� (n� 1) = b� (n� 1) +Pn�3j=n�(k�m)�m+1 b� (j), which implies thatb� (n) = 2b� (n� 1) + n�3Xj=n�k+1 b� (j):Besides, b� (n) = p3n+3 for all n � k� 1 (see Theorem 2.3), hence we multiply by xn and add over alln � k to get the desired result.Second proof. By Theorem 2.5 it is enough to prove the result for B1k(k�1)���2(x) and k � 3. Whenk = 3, the transfer matrix of the system (2.3) isA = � 1 11 1 �and so B132(x) = 1�x1�2x : When k > 3, the transfer matrix of the system (2.4) isA = 26666666664 1 0 1 0 0 : : : 01 1 0 0 0 : : : 01 1 0 1 0 : : : 01 1 0 0 1 : : : 0... . . .1 1 0 0 0 : : : 11 2 0 0 0 : : : 0 37777777775(k�1)�(k�1)and using the same techniques as in the second proof of Theorem 2.3 the result holds. �As a remark, if we �x m and let k ! 1, then Theorem 2.7 yields that the number of Baxterpermutations in B(n) is given by p3n+3, the (3n+ 3)th Padovan number (see Theorem 2.3).Let us now consider simultaneous avoidance of two length k patterns of the form m � � �21k � � � (m +2)(m + 1) and, as previously, we denote such a pattern by � [m; k]. We show that the correspondinggenerating function depends only on the length of patterns.Theorem 2.8. Let k � 3 and 1 < m � k � 1. The number of 123-avoiding Baxter permutations inB(n) avoiding both patterns � (1) = � [m� 1; k] and � (2) = � [m; k] does not depend on m.Proof. Let m � k � 2 and � (3) = � [m + 1; k]. We construct a bijection � ,! �̂ from B�(1) ;�(2) (n)to B�(2) ;�(3) (n) de�ned by �̂ = � if � does not contain � (3), and recursively as follows otherwise.If � = (n; �0) then �̂ = (n; �̂0). Otherwise � has the form (i; i � 1; : : : ; j; n; n � 1; : : : ; i + 1; �0). If(i; i � 1; : : : ; j; n; n� 1; : : : ; i+ 1)� does not contain � (3), then �̂ = (i; i � 1; : : : ; j; n; n� 1; : : : ; i+ 1; �̂0)� contains � (3), then �̂ = (m � 2 + j;m� 3 + j; : : : ; j; n; : : : ; i+ 1; n� 1 + j; �̂0).Thus, � ,! �̂ is invertible and so it is a bijection between B�(1) ;�(2) (n) and B�(2) ;�(3) (n). �The generating trees induced by the following succession rule are subtrees of that induced by (2.3) and(2.4), respectively, which in turn are subtrees of (2.1). Also, all of these succession rules are minimal.Proposition 2.9. The succession rules for the set of Baxter permutations in B1k���32;21k���3(n) aregiven by



RESTRICTED 123-AVOIDING BAXTER PERMUTATIONS AND THE PADOVAN NUMBERS 7� if k = 3(2.5) root (2)rule (2)  (2)(1)(1)  (2)� if k > 3(2.6) root (21)rule (1)  (21)(21)  (21)(31)(22)  (21)(22)(3p)  � (21)(22)(3p+1) if p < k � 3;(21)(1)(22) if p = k � 3:Proof. For k = 3, by Proposition 2.1, the Baxter permutations in B132;213(n) have the form (n; �0)or (n � 1; n; �0). The �rst ones are labeled by (2) and they have two successors: (n + 1; n; �0) and(n; n+ 1; �0). The second ones are labeled by (1) and they have one successor: (n + 1; �).The succession rule (2.1) can produce sequences (i; i� 1; : : : ; j; n; n� 1; : : : ; i+ 1) of arbitrary lengthand it makes possible the creation of the patterns 1k � � �32 and 21k � � �3. So, for k > 3 the successionrule (2.6) results from (2.1) by imposing, in each � produced by (2.1) with �1 6= n, that the length ofthe sequence (i; i� 1; : : : ; j; n; n� 1; : : : ; i+ 1) does not exceed k � 1 whenever n� i = k � 2. �Theorem 2.10. Let k � 3 and 1 < m � k � 1. The number of 123-avoiding Baxter permutations inB(n) avoiding both patterns � [m� 1; k] and � [m; k] is given by� if k = 3, 11�x�x2 ,� if k > 3, 1�x1�2x�x3�x4�����xk�1+xk .Proof. For k = 3 the the Baxter permutations inB132;213(n) are exactly the permutations inSn(123; 132; 213)and they are counted by the Fibonacci numbers, see [9].For k > 3, by Theorem 2.8 it is enough to prove the result for m = 2. In this case the transfer matrixof the system (2.6) is A = 2666666666664 1 0 0 1 0 0 : : : 01 0 0 0 0 0 : : : 01 0 1 0 0 0 : : : 01 1 0 0 1 0 : : : 01 1 0 0 0 1 : : : 0... . . .1 1 0 0 0 0 : : : 11 1 1 0 0 0 : : : 0 3777777777775k�kand, again, by calculations the result holds. �2.3. A pattern � = (k� 1)k(k� 2) � � �21. Again, by Proposition 2.1 it is easy to see that the num-ber of Baxter permutations inB231(n) is given by �n2�+1 for all n � 0. Indeed, B231(n) consists of thepermutation n(n� 1) � � �1 and �n2� permutations of the form n(n� 1) � � �ji(i� 1) � � �1(j� 1) � � � (i+1)with 1 � i < j � n. The case of varying k is more interesting. As an extension of the above result letus consider the case of � = (k � 1)k(k � 2) � � �21.



8 TOUFIK MANSOUR AND VINCENT VAJNOVSZKITheorem 2.11. Let k � 3; the number of Baxter permutations b(k�1)k(k�2)���21(n) is given by apolynomial of degree 2 with coe�cients in Q for all n � 2(k � 3).Proof. Let � = (k � 1)k(k� 2) � � �21 and let us de�ne b� (n; i1; i2; : : : ; im) to be the number of Baxterpermutations � 2 B� (n) such that �1�2 � � ��m = i1i2 � � � im. In view of Proposition 2.1 it is easy tosee that b� (n) = b� (n;n) + n�1Xi=2 b� (n; i; i� 1) + n�1Xi=1 b� (n; i; n):By de�nitions we get b� (n; i; i � 1) = b� (n � 1; i � 1) and b� (n;n) = b� (n � 1), so by the fact thatPnj=1 b� (n; j) = b� (n) we haveb� (n) = 2b� (n � 1)� b� (n � 2) + n�1Xi=1 b� (n; i; n):On the other hand, in [6] it is proved that no sequence of length d � (p�1)(q�1) avoids both 12 � � �pand q(q � 1) � � �1. So, by using Proposition 2.1 we get that b� (n; i; n) = 0 for all i � 1 � 2(k � 3)since the sequence �n�i+2; �n�i+3; : : : ; �n contains at least 123 or (k�2)(k�3) � � �1. Therefore, thereexists a constant c such that b� (n) = 2b� (n � 1)� b� (n � 2) + c;for all n � 2(k � 3). Thus, if p = b� (2(k � 3) � 2) and q = b� (2(k � 3) � 1), then by induction on nwe can state that b� (2(k � 3) + n) = q(n+ 2)� p(n+ 1) + c�n+ 22 �;for all n � 0, as required. �As an application of Theorem 2.11 and using the initial values of the sequence b(k�1)k(k�2)���21(n) weget the following.Corollary 2.12.(1) For all n � 0, b231(n) = n2 (n� 1) + 1;(2) For all n � 2, b3421(n) = 3n2 (n� 3) + 5;(3) For all n � 4, b45321(n) = 5n(n� 6) + 52;(4) For all n � 6, b564321(n) = n2 (35n� 321) + 397:We note that for all � as in the previous theorem, possibly except for �nitely many of them, there is nominimal succession rule for the set of Baxter permutation in B(n) avoiding � . Indeed, the generatingfunction of the set under consideration is rational with the denominator a polynomial of degree two,and there exist �nitely many succession rules on a set of two labels.2.4. Other statistics. Another application for Proposition 2.1 is to consider statistics on 123-avoiding Baxter permutations according to the number of rises (number of rises for a permutation �is equal to jfij�i < �i+1gj) or left-to-right maxima (number of left-to-right maxima for a permutation� is equal to jfij�i > �j for all j < igj).Theorem 2.13. The number of Baxter permutations in B(n) having r rises is �n+r3r �. In otherwords, the generating function for the number of Baxter permutations in B(n) having r rises is givenby x2r(1�x)3r+1 .



RESTRICTED 123-AVOIDING BAXTER PERMUTATIONS AND THE PADOVAN NUMBERS 9Proof. By Proposition 2.1 we get that for each Baxter permutations in B(n) with r rises correspondsan integer sequence fxig3r+1i=0 with x3j < x3j+1 � x3j+2 < x3j+3 for all j, 0 � j � r � 1, and x0 = 0,x3r � x3r+1 = n. � is bijectively related to fxig by� �i = n+ 1� i if x3j+1 � i � x3j+2� �i < n+ 1� i if x3j+2 < i � x3j+3� �i > n+ 1� i if x3j < i < x3j+1and there are exactly �n+r3r � such sequences fxig. �A 123-avoiding Baxter permutation in B(n) has either one or two left-to-right maxima.Theorem 2.14. The number of 123-avoiding Baxter permutations in B(n) having one left-to-rightmaxima is given by p3n for all n � 1, and the number of 123-avoiding Baxter permutations in B(n)having two left-to-right maxima is given by p3n+3 � p3n for all n � 2, where pm is the mth Padovannumber.Proof. If � 2 B(n) is a 123-avoiding Baxter permutation with one left-to-right maxima then � =(n; �0) and the number of such permutations is b?(n � 1).If � has two left-to-right maxima then � = (i; i�1; � � � ; j; n; n�1; : : : ; i+1; �0). For each j, 2 � j � n,there are j�1 sequences (i; i�1; : : : ; j; n; n�1; : : :; i+1) and b?(j�1) permutations �0. So, the numberof permutations � is Pnj=2(j � 1)b?(j � 1) and, as in relation (2.2), it equals b?(n)� b?(n � 1). �3. 123-avoiding Baxter permutations containing another patternLet b� ;r (n) be the number of Baxter permutations in B(n) containing � exactly r times. We denoteby B� ;r (x) the corresponding generating function, that is, B� ;r (x) = Pn�0 b� ;r(n)xn. Using similararguments as in the proof of Theorem 2.7, along with Proposition 2.1, we haveLemma 3.1. Let k � 3, r � 0, and let � = � [m; k] where 1 � m � k � 1. For all n � 1,b� ;r(n) = b� ;r (n� 1) + n�1Xi=1 iXj=1 b� ;r�(i�j+1m )( n�ik�m)(j):3.1. The case r = 1 and � = � [m;k]. Lemma 3.1 yields for r = 1 thatb� ;1(n) = b� ;1(n� 1) + b� ;0(n� k) + m�2Pi=0 iPj=0 b� ;1(j)++ n�(k�m)�1Pi=m�1 iPj=i�m+2 b� ;1(j) + n�2Pi=n�(k�m) iPj=0 b� ;1(j);so b� ;1(n) � b� ;1(n� 1) = b� ;1(n � 1) + b� ;0(n � k)� b� ;0(n � k � 1) + n�3Xj=n�k+1b� ;1(j);equivalently b�;1(n) = 2b�;1(n� 1) + b� ;0(n� k)� b� ;0(n� k � 1) + n�3Xj=n�k+1 b� ;1(n):Besides, b� ;1(n) = 0 for all n � k � 1, hence by using Theorem 2.7 we get



10 TOUFIK MANSOUR AND VINCENT VAJNOVSZKITheorem 3.2. Let k � 3 and 1 � m � k � 1. ThenB� [m;k];1(x) = xk(1� x)2(1� 2x� x3 � x4 � � � � � xk�1)2 :3.2. The pattern � = 132. In the current subsection we consider the case � = 132 and r � 0. Asan application for Lemma 3.1 we have the following result.Theorem 3.3. We have(i) b132;0(n) = 2n�1 ,for all n � 1;(ii) b132;1(n) = n � 2n�5, for all n � 4,(iii) b132;2(n) = (n2 + 13n� 20)2n�10, for all n � 7.Proof. By Lemma 3.1 for r = 0, k = 3, and m = 1 we get b132;0(n) = b132;0(n � 1) +Pn�2j=0 b132;0(j).Besides, b132;0(0) = 1, hence (i) holds.Again, by Lemma 3.1 for r = 1, k = 3, and m = 1 we getb132;1(n) = b132;1(n� 1) + b132;0(n� 3) + n�2Xj=0 b132;1(j):Besides, b132;0 = 0, hence the rest is easy to check.Similarly as the �rst two cases, (iii) holds. �Remark 3.4. In addition, Lemma 3.1 can be used to derive other examples for the choice of r and �but we su�cient by the above two examples.4. Baxter permutation avoiding 123 and generalized pattern without dashesGeneralized patterns are introduced in [2]; they can impose the requirement that two adjacent lettersin a pattern must be adjacent in the permutation. We write a classical pattern with dashes betweenany two adjacent letters of the pattern, say 1342, as 1-3-4-2; and, for example, the generalized pattern24-3-1 means that if this pattern occurs in the permutation �, then the letters in the permutation� corresponding to 2 and 4 are adjacent. For example, the permutation � = 35421 has only twooccurrences of the pattern 23-1, namely the subsequences 352 and 351, whereas � has four occurrencesof the pattern 2-3-1, namely the subsequences 352, 351, 342 and 341.Here we count a generalized pattern of length k without dashes in 1-2-3-avoiding Baxter permutationsin B(n). Let us consider the case of a generalized pattern � = � [m; k] (without dashes) of length k.Theorem 4.1. Let k � 3 and 1 � m � k�1. The generating function for the number of 1-2-3-avoidingBaxter permutations in B(n) containing the generalized pattern � [m; k] without dashes exactly r timesis given by xkr(1 � x)r�1(1� 2x� x3 � � � � � xk�1)r+1 :Proof. For 1 < m � k � 1 the transformation � ,! ~� given in Theorem 2.5 maps bijectively anoccurrence of � [m; k] into one of � [m � 1; k] and so it is enough to prove the statement for the
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