
Efficient generation of restricted growth words

Toufik Mansour

Department of Mathematics, University of Haifa

31905 Haifa, Israel

tmansour@univ.haifa.ac.il

Vincent Vajnovszki

LE2I, Université de Bourgogne

BP 47870, 21078 Dijon Cedex, France

vvajnov@u-bourgogne.fr

May 30, 2013

Abstract

A length n restricted growth word is a word w = w1w2 . . . wn over the set of integers
where w1 = 0 and each wi, i > 1, lies between 0 and the value of a word statistics of
the prefix w1w2 . . . wi−1 of w, plus one. Restricted growth words simultaneously generalize
combinatorial objects as restricted growth functions, staircase words and ascent or binary
sequences. Here we give a generic generating algorithm for restricted growth words. It
produces a Gray code and runs in constant average time provided that the corresponding
statistics has some local properties.

Keywords: Algorithms, Restricted growth functions/words, Gray codes.

1 Introduction

A list of words is a Gray code if successive words in the list differ in a ‘small prespecified
way’ [12]. Here we adhere to the following (quite restrictive) definition: a list of words is
a Gray code if the words are listed so that two successive words differ in a single position
and by a bounded amount in this position.

In this paper we give a generating algorithm producing a Gray code for words over
the set of integers, and satisfying the following constraint: the ith symbol of each word is
upper bounded by the value of a statistics of its length i − 1 prefix, plus one.

A statistics on a set of words is an association of an integer to each word in the set.
Classical examples of statistics are defined as: if w = w1w2 . . . wn, then

m(w) = max{w1, w2, . . . , wn},

last(w) = wn,

asc(w) = card{i | 1 < i ≤ n and wi−1 < wi},

len(w) = n − 1,

bin(w) = 0,

and we will consider only statistics st satisfying st(w1w2 . . . wn) ≤ n − 1, which agrees
with most of naturally defined statistics.

1



Definition 1. Let st be a statistics on words. An st-restricted growth word is a word
w = w1w2 . . . wn with w1 = 0, and

wi ≤ st(w1w2 . . . wi−1) + 1, for 1 < i ≤ n. (1)

For particular cases, known sets of words are obtained, and they code various classes of
combinatorial objects. For example, the set of

• m-restricted growth words is the set of restricted growth functions [10, 14],

• last-restricted growth words is the set of staircase words [13, exercise u, p. 222],

• asc-restricted growth words is the set of ascent sequences [3, 8],

• len-restricted growth words is the set of subexcedant sequences [4, 16],

• bin-restricted growth words is the set of binary words over {0, 1}, and beginning
with a zero.

Notice that, if w = w1w2 . . . wn is an st-restricted growth word, then so is any of its
prefixes, and any word w1w2 . . . wnan+1an+2 . . . am with ai ∈ {0, 1}, n + 1 ≤ i ≤ m, is
still an st-restricted growth word. Also, with the restriction on statistics imposed before
Definition 1 it follows that 0 ≤ wi ≤ i − 1, for 1 ≤ i ≤ n.

Definition 2. A statistics st is called local if the value of st(w) of any length n ≥ 2
st-restricted growth word w = w1w2 . . . wn can be computed in constant time from
st(w1w2 . . . wn−1) and w1w2 . . . wn.

Example 1. The statistics m, last, asc, len and bin are local. Indeed, for n ≥ 2 we have:

• m(w1w2 . . . wn) = max{m(w1w2 . . . wn−1), wn},

• last(w1w2 . . . wn) = wn,

• asc(w1w2 . . . wn) =

{

asc(w1w2 . . . wn−1) if wn−1 ≥ wn,

asc(w1w2 . . . wn−1) + 1 if wn−1 < wn,

• len(w1w2 . . . wn) = len(w1w2 . . . wn−1) + 1.

By contrast, the following statistics is not local:

st(w1w2 . . . wn) = card{i | 1 ≤ i < n, and wi < wn}.

This statistics counts the number of occurrences of the vincular pattern 0−1] (defined in
[1]), and is not local. Indeed, in general, the value of st(w1w2 . . . wn), n ≥ 2, can not be
computed in constant time from st(w1w2 . . . wn−1) and w1w2 . . . wn.

2



1 00000 15 00101 29 01211 43 01000

2 00001 16 01101 30 01231 44 01002

3 00011 17 01102 31 01233 45 01001

4 00012 18 01100 32 01234 46 01021

5 00010 19 01120 33 01232 47 01023

6 00110 20 01122 34 01230 48 01022

7 00112 21 01123 35 01220 49 01020

8 00111 22 01121 36 01222 50 01010

9 00121 23 01111 37 01223 51 01012

10 00123 24 01112 38 01221 52 01013

11 00122 25 01110 39 01201 53 01011

12 00120 26 01210 40 01203

13 00100 27 01212 41 01202

14 00102 28 01213 42 01200

Table 1: The ascent sequences (corresponding to the statistics asc) of length 5 generated by
procedure GenRGW; the positions where two successive words differ are underlined.

2 Generating algorithm

Definition 3. For an integer m we define two (ordered) lists L(m) and L(m):

• L(m) is the list of even numbers in the set {0, 1, . . . , m} in increasing order, followed
by the list of odd numbers in the same set, in decreasing order;

• L(m) is the reverse of L(m), that is, the list of odd numbers in the set {0, 1, . . . , m}
in increasing order, followed by the list of even numbers in the same set, in decreasing
order.

For example, L(1) = 0, 1; L(2) = 1, 2, 0; L(5) = 0, 2, 4, 5, 3, 1; and L(6) = 0, 2, 4, 6, 5, 3, 1;
and these lists will be used in our generating algorithm. The main idea is that L and L
list the sets under consideration by imposing their first and last elements, namely 0 and
1, and successive elements differ by at most two. Similar techniques appear in an ECO-
based context in [2] where the first and last value for each entry to update are imposed;
and in [9] where concatenation of lists and reversed lists is used.

Now we explain the generating algorithm GenRGW given in Figure 1(a). In each recursive
call of GenRGW, w = w1w2 . . . wn is a global variable, and we say that GenRGW acts on w;
and the main call GenRGW(2,0) acts on 00 . . . 0. The first parameter, k, of GenRGW is the
position in w updated by the current call; and the second one, u, gives the value of the
statistics st for w1w2 . . . wk−1. The call GenRGW(k,u), 2 ≤ k ≤ n, acting on the current
word w1w2 . . . wn

• exhausts all possible values for wk (with respect to the prefix w1w2 . . . wk−1), in L
or L order, and

• prints w if k = n, or calls recursively GenRGW(k+1,v) for each of these values, where
v = st(w1w2 . . . wk), if k < n.

3



Procedure GenRGW induces a generating tree covered in depth first way; see Figure 1(b)
where the length four m-restricted growth words are at the last level (rightmost one) of the
generating tree. Theorem 1 states that it generates exhaustively the set of st-restricted
growth words of length n and Proposition 1 that this is done in a Gray code manner.
Moreover, if st is a local statistics, then GenRGW is efficient.

Theorem 1. Algorithm GenRGW produces exhaustively length n st-restricted growth words.

Proof. We will show that GenRGW produces, with no omissions nor repetitions st-restricted
growth words.
Let us consider the generating tree induced by GenRGW where the root call is GenRGW(2,0).
In this tree, a recursive call with its first parameter k and acting on w1w2 . . . wn produces
only calls acting on words with fixed length k − 1 prefix equal to w1w2 . . . wk−1. More
precisely, for each x ∈ {0, 1, . . . , st(w1w2 . . . wk−1) + 1}, it produces in the for loop a
call acting on a word beginning with w1w2 . . . wk−1x. Since the main call GenRGW(2,0)
produces directly two recursive calls acting on words with prefix 00 and 01 respectively
(the only two st-restricted growth words of length two), it follows by induction that for
each k ≤ n and each st-restricted growth word w1w2 . . . wk, all words with the prefix
w1w2 . . . wk are produced, and in particular the whole list of length n words.

In addition, if s and t are two words printed by terminal calls, then either s and t are
generated by the same terminal call, and so they differ in the last position, or there is a
k < n such that s and t are produced by two different calls produced in turn by the same
call with the first parameter equal to k, and so s and t differ in position k.

A prefix partitioned list is a list of words where words with a given prefix are contiguous.
For a given prefix, procedure GenRGW exhausts all restricted words with this prefix, and
so it generates prefix partitioned list. In addition, the set of extremal values (first and
last value) in the list M equals {0, 1}, and thus, the first and the last word with a given
prefix w1w2 . . . wk generated by GenRGW have the form w1w2 . . . wkak+1ak+2 . . . an, with
ai ∈ {0, 1} for k + 1 ≤ i ≤ n.

In a given call in the generating tree, the statement ‘wk := i’ is performed several
times. The first of them does not change the value of wk, which is either 0 or 1, the
previous value of wk. By induction the next proposition follows. See Table 1 for an
example.

Proposition 1. For any n and statistics st, procedure GenRGW generates a Gray code for

the set of st-restricted growth words of length n where two successive words differ in a

single position and by ±1 or by ±2 in this position.

Moreover, if the statistics st is local, then procedure GenRGW has a constant aver-
age time complexity. Indeed, the total amount of computation done by a terminal call
is proportional to the number of generated words by this call, and each non-terminal
call produces at least two recursive calls. Since for any prefix w1w2 . . . wk the value of
st(w1w2 . . . wk) can be computed in constant time, by Frank Ruskey’s ‘CAT’ principle
[11], it follows that GenRGW runs in constant amortized time.

4



procedure GenRGW(k,u)

global n, w;

if wk = 0
then M := L(u + 1);
else M := L(u + 1);
end if

for i in M do

wk := i;

if k = n

then print w;

else v := st(w1w2 . . . wk);
GenRGW(k + 1,v);

end if

end do

end procedure.

0000

0000

0000
0000

0001

0011

0011

0012

0010

0110

0110

0110

0112

0111

0121

0121

0123

0122

0120

0100

0100

0102

0101
(a) (b)

Figure 1: (a) Algorithm generating st-restricted words of length n; v = st(w1w2 . . . wk) is com-
puted in constant time from w1w2 . . . wk and u = st(w1w2 . . . wk−1). Initially w = 00 . . . 0, and
the main call is GenRGW(2,0). (b) The generating tree induced by the call of GenRGW(2,0) with
n = 4 and the statistics st is m. At level k, the kth digit (underlined) is changed if the current
call is not the first recursive call produced by its parent, and words are generated at the last
level.

Pattern involvement statistics

A pattern over the alphabet {0, 1, . . . , k} is a word where each letter of the alphabet
occurs at least once. An occurrence of the (consecutive) pattern a = a1a2 . . . aj in the
word w = w1w2 . . . wn is a factor wsws+1 . . . ws+j−1 of w order isomorphic with a, that is,
for any u ∈ {1, 2, . . . , j − 1}, ws+u−1 and ws+u are in same order relation (>, < or =) as
au and au+1. And for a pattern a, ♯ a denotes the (pattern involvement) statistics giving
the number of occurrences of this pattern. It is easy to see that

Remark 1. Each pattern involvement statistics is local.

Pattern involvement allows to re-express known statistics and formulate new ones.
For example asc = ♯ 01, and below we give other examples of pattern involvement-based
statistics. Each of them is local, and so our algorithm can be applied in order to generate
exhaustively, in Gray code order, its corresponding list of length n restricted growth
words.
For example, the following (combinations of) statistics are pattern involvement based,
and so local. Number of descents: des = ♯ 10; of double ascents: dasc = ♯ 012; of valleys:
val = ♯ 101 + ♯ 201 + ♯ 102; of levels: lev = ♯ 00.

5



3 Final remarks

A possible generalization of st-restricted growth words is to replace the condition in rela-
tion (1) by one of the following conditions:

wi ≤ st(w1w2 . . . wi−1) + t,

wi ≤ min{st(w1w2 . . . wi−1) + 1, t},

wi ≤ max{st(w1w2 . . . wi−1) + 1, t},

for a given t > 1. When st is m we obtain in the first case the set of e-restricted growth
functions [7]; in the second case, the set of restricted growth functions coding set partitions
with at most t + 1 blocks [10]; and in the last case the set of restricted growth tails [10].
The corresponding generating algorithms are obtained simply by replacing L(u + 1) in
procedure GenRGW by L(u + t), L(min{u + 1, t}) and L(max{u + 1, t}), respectively, and
similarly for L(u + 1).

In each case, our Gray code is different from the previous ones. Also, as a degenerate
case, when st is constant and equal to zero for each word, then the list generated by
procedure GenRGW is the first half of Binary Reflected Gray Code list [5] consisting on
binary words with a zero in the first position; and so our Gray codes can be seen as a
generalization of Binary Reflected Gray Code.

T. Walsh gave in [17] a general generating algorithm for Gray code lists satisfying the
following two properties: (1) words with the same prefix are successive (that is, the list
is prefix partitioned); (2) for each proper prefix w1w2 . . . wk of a word in the list there are
at least two values a and b such that w1w2 . . . wka and w1w2 . . . wkb are both prefixes of
words in the list. Our Gray code lists satisfy Walsh’s previous desiderata and so it can be
generated by a loop-free algorithm by applying his general method. See also [15] where is
given a general technique for the loop-free generation of particular subsets of the product
space. Alternatively, a loop-free implementation can be obtained by using the finished
and unfinished lists method, introduced in [6].

We conclude by a remark on the generating order induced by the procedure GenRGW.
It is clear that, for a fixed length, the set of staircase words is a subset of the set of
restricted growth functions which in turn is a subset of the set of ascent sequences. These
relations are not preserved in terms of sublists, that is, words do not necessarily appear
in same relative order in various lists. Let consider for example the three staircase words
x = 010111, y = 010100 and z = 010110. Procedure GenRGW generates x before y as
staircase word, but after y as restricted growth function. Similarly, x is generated before
z as restricted growth function but after z as ascent sequence.

Acknowledgment

The authors would like to thank one of the anonymous referees for helpful suggestions
which have improved the accuracy of this paper.

6



References

[1] E. Babson and E. Steingŕımsson, Generalized permutation patterns and a clas-
sification of Mahonian statistics, Sém. Lothar. Combin., 44:Art. B44b, 18pp. (elec-
tronic), 2000.

[2] A. Bernini, E. Grazzini, E. Pergola and R. Pinzani, A general exhaustive
generation algorithm for Gray structures, Acta Informatica, 44(5) (2007), 361–376.

[3] M. Bousquet-Mélou, A. Claesson, M. Dukes and S. Kitaev (2+2)-free
posets, ascent sequences and pattern avoiding permutations, J. Comb. Theory Ser.

A, 117(7) (2010), 884-9-09.

[4] D. Foata and G.-N. Han, New permutation coding and equidistribution of set-
valued statistics Theor. Comput. Sci. 410(38–40) (2009), 3743–3750.

[5] F. Gray, Pulse code communication, U.S. Patent 2632058 (1953).

[6] J.M. Lucas, D.R. van Baronaigien and F. Ruskey, On rotations and the
generation of binary trees, J. Algorithms, 15 (1993), 1–24.

[7] T. Mansour, G. Nassar and V. Vajnovszki, Loop-free Gray code algorithm
for e-restricted growth functions, Information Processing Letters, 111(11) (2011),
541–544.

[8] T. Mansour and M. Shattuck, Some enumerative results related to ascent se-
quences, arXiv:1207.3755.

[9] F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists, 4th
ISAAC–Lecture Notes in Computer Science, 762 (1993) 201–208.

[10] F. Ruskey and C. Savage, Gray codes for set partitions and restricted growth
tails, Australian Journal of Combinatorics, 10 1994, 85–96.

[11] F. Ruskey, Combinatorial generation. Book in preparation.

[12] C. Savage, A Survey of Combinatorial Gray Codes, SIAM Rev. 39(4) (1997), 605–
629.

[13] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press,
1999.

[14] D. Stanton and D. White, Constructive combinatorics, Springer-Verlag, 1986.

[15] V. Vajnovszki, On the loopless generation of binary tree sequences, Information

Processing Letters, 68 (1998), 113–117.

[16] V. Vajnovszki, Lehmer code transforms and Mahonian statistics on permutations,
Discrete Mathematics, 313 (2013), 581–589.

7



[17] T. Walsh, Generating Gray codes in O(1) worst-case time per word, 4th Discrete

Mathematics and Theoretical Computer Science Conference, Dijon-France, 7-12 July
2003 (LNCS 2731, 71–88).

8


