
Prefix partitioned Gray codes for particular cross-bifix-free sets

A. Bernini∗ S. Bilotta∗ R. Pinzani∗ A. Sabri† V. Vajnovszki†

July 15, 2014

Abstract

A set of words with the property that no prefix of any word is the suffix of any other
word is called cross-bifix-free set. We provide an efficient generating algorithm producing
Gray codes for a remarkable family of cross-bifix-free sets.

Keywords: Gray codes, cross-bifix-free sets, CAT algorithms, q-ary words.

2010 Mathematics Subjects Classification: 68R15; 94B15; 69P30.

1 Introduction

Encoding and listing the objects of a particular class is a common problem to several research
areas, such as computer science and hardware or software testing, chemistry, biology and bio-
chemistry. A very special kind of list is the so called Gray code, where two successive objects
differ ‘in some pre-specified small way’ [11]. Gray codes are involved in several combinatorial
structures, as permutations [16], binary strings, Motzkin and Schröder words [19], derangements
[3], involutions [20]. They are also used in other technological subjects as circuit testing, signal
encoding [15], data compression and others.

The generation of a Gray code is often closely related with the nature of the objects we are
dealing with. In this context we are going to generate Gray codes for particular words over the
alphabet {0, 1, . . . q − 1}, so that two successive words differ in a single position and by 1 or −1
in this position.

The set we are dealing with is called cross-bifix-free (this term appeared for the first time
in [1], see also [2]) and consists of words having some constraints we are going to define in the
following. We recall that a bifix (or border) of a word is a factor which is both a prefix and a
suffix. A word is said to be bifix-free if it does not contain any bifix [17]. A set of bifix-free
words is cross-bifix-free if, given any two words, any prefix of the first one is not a suffix of the
second one.

Cross-bifix-free sets are involved in the study of distributed sequences for frame synchro-
nization [14]. The problem of determining such sets is also related to several other scientific

∗Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale G.B. Mor-
gagni 65, 50134 Firenze, Italy. {bernini}{bilotta}{pinzani}@dsi.unifi.it

†LE2I, Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France.
{ahmad.sabri}{vvajnov}@u-bourgogne.fr

1

applications, for instance in pattern matching [7] and automata theory [4]. Moreover, in some
applications, listing a cross-bifix-free set in Gray code manner can be of a particular interest.

Several methods for constructing cross-bifix-free sets have been recently proposed as in [2, 5,
6]. To our knowledge, for a fixed cardinality of the alphabet and of the length of the words, the
construction giving the cross-bifix-free set having the greatest cardinality is the one proposed
in [6]. In this paper we propose Gray codes for such cross-bifix-free sets which allow a deeper
understanding and possible further applications of this combinatorial class.

Following the authors of [6], the cross-bifix-free set we consider here is denoted by S
(k)
n,q. It is

formed by length n words over the q-ary alphabet [q] = {0, 1, . . . , q − 1} containing a particular
sub-word avoiding k consecutive 0s. Now we briefly summarize its definition and we refer the
reader to [6] for more details about its features.

Let n ≥ 3, q ≥ 2 and 1 ≤ k ≤ n − 2. The cross-bifix-free set S
(k)
n,q is the set of all length n

words s1s2 · · · sn over [q] satisfying:

• s1 = · · · = sk = 0;

• sk+1 6= 0;

• sn 6= 0;

• the sub-word sk+2 . . . sn−1 does not contain k consecutive 0s.

The set S
(2)
5,4 is showed in Table 1 (c). Note that it is already listed in a Gray code manner and

its generation will be presented in the next sections.

Below we recall the cardinality of S
(k)
n,q : let

f (k)
n,q =











qn if 0 ≤ n < k,

(q − 1)
(

f
(k)
n−1,q + f

(k)
n−2,q + . . . + f

(k)
n−k,q

)

if n ≥ k,

(1)

be the sequence enumerating the words of n length words over [q] avoiding k consecutive zeros
[15, 18] (observe that in the particular case of q = 2, the well known k-generalized Fibonacci

sequences [12] are obtained). It is not difficult to realize that, from the above description of S
(k)
n,q

we have:
|S(k)

n,q| = (q − 1)2f
(k)
n−k−2,q. (2)

In this work we propose a Gray code which is prefix partitioned in the sense that all the
words with the same prefix are consecutive. For constructive reasons we give the Gray code

S
(k)
n+k,q for the set S

(k)
n+k,q starting from particular list of length n words, then prepending the 0k

prefix. Our strategy in order to obtain S
(k)
n+k,q

is the following:

• first, we adapt a q-ary generalization of the Binary Reflected Gray Code [9] and obtain

the list H
(k)
n,q(u), a Gray code for the set of q-ary words with no 0k factors and beginning

by at most u 0s, 0 ≤ u ≤ k − 1, then

• we restrict this Gray code to words which end by a non-zero symbol and we denote by

J
(k)
n,q (u) the obtained list; in particular J

(k)
n,q (0) is a Gray code for the set of q-ary words

with no 0k factors which begin and end by a non-zero symbol;

2

• finally, prepending a 0k prefix to each word in J
(k)
n,q (0), the desired Gray code S

(k)
n+k,q is

obtained.

In the following we will use the notations below:

• For a list of words L, L denotes the list obtained by covering L in reverse order; and for
i ≥ 0, (L)i denotes the list L if i is even, and the list L if i is odd;

• first(L) and last(L) denotes, respectively, the first and the last word of L, and clearly,
first(L) = last(L) and last(L) = first(L);

• If α is a word, then αn is the word which consists of n copies of α; and α · L is the list
obtained by concatening α to each word of L;

• For two lists L and M, L ◦M denotes their concatenation, and for two integers, p ≤ r,
and the lists Lp,Lp+1, . . . ,Lr, we denote by ©r

i=pLi the list Lp ◦ Lp+1 ◦ . . . ◦ Lr;

• L ⊂ M means that L is a (possibly scattered) sublist of M; in this case the corresponding
underlying sets L and M satisfy L ⊂ M .

2 The Gray codes construction

For our purpose we need a Gray code list for the set of words of a certain length over the q-ary
alphabet [q], q ≥ 2. An obvious generalization of the Binary Reflected Gray Code [9] to the
alphabet [q] is the list Gn,q for the set of words [q]n (i.e. the length n words over [q]) defined
in [8, 22] where it is also shown that Gn,q is a Gray code with Hamming distance 1. We recall
that the Hamming distance between two successive words in a Gray code list is the number
of positions where the two words differ. Moreover, if the Hamming distance is d, then the
associated Gray code is said d-Gray code. The list Gn,q is defined as:

Gn,q =







λ if n = 0,

©q−1
i=0 i · (Gn−1,q)

i if n > 0,

(3)

where λ is the empty word. The reader can easily verify the following proposition.

Proposition 1. For q ≥ 2,

• first(Gn,q) = 0n;

• last(Gn,q) = (q − 1)0n−1 if q is even, and (q − 1)n if q is odd.

Now, let fix a k ≥ 2 and for 0 ≤ u ≤ k − 1 let us define the list H
(k)
n,q(u) = Hn,q(u) as:

Hn,q(u) =























λ if n = 0,

©q−1
i=1 i · (Hn−1,q(k − 1))i if n > 0, u = 0,

0 · Hn−1,q(u − 1) ◦©q−1
i=1 i · (Hn−1,q(k − 1))i if n, u > 0.

(4)

3

Notice that, when q = 2, the case n > 0 and u = 0 of this definition becomes Hn,2(0) =

1 · Hn−1,2(k − 1).

Let α = α1α2α3 . . . be the infinite word (1(q − 1)0k−1)∞. The following propositions hold.

Proposition 2. The last and first words in the list Hn,q(u) are given by:

• If q is even, then

– first(Hn,q(u)) = 0uα1α2 . . . αn−u,

– last(Hn,q(u)) = (q − 1)0k−1α1α2 . . . αn−k.

• If q is odd, then

– first(Hn,q(u)) = 0u1(q − 1)n−u−1,

– last(Hn,q(u)) = (q − 1)n.

Proof. Let q ≥ 2 be even and 0 ≤ u < n. By relation (4) it follows that

first(Hn,q(u)) = 0u · first(Hn−u,q(0))

= 0u1 · first(Hn−u−1,q(k − 1))

= 0u1 · last(Hn−u−1,q(k − 1))

and when u < n − 1, since q − 1 is odd, we have

first(Hn,q(u)) = 0u1(q − 1) · last(Hn−u−2,q(k − 1))

= 0u1(q − 1) · first(Hn−u−2,q(k − 1)),

and induction on n completes the proof. Similarly,

last(Hn,q(u)) = (q − 1) · last(Hn−1,q(k − 1))

= (q − 1) · first(Hn−1,q(k − 1)),

and by the previous result, the statement holds.
Now, if q ≥ 3 is odd and n > 1, for any u we have

last(Hn,q(u)) = (q − 1) · last(Hn−1,q(k − 1)),

and thus, last(Hn,q(u)) = (q − 1)n. And when u < n, we have

first(Hn,q(u)) = 0u · first(Hn−u,q(0))

= 0u1 · first(Hn−u−1,q(k − 1))

= 0u1 · last(Hn−u−1,q(k − 1))

= 0u1(q − 1)n−u−1,

and the result holds. �

Proposition 3. The list Hn,q(u) is a Gray code for the set of words in [q]n with no 0k factors
and beginning by at most u 0s.

4

Proof. Clearly, by the definition given by relation (4), the list Hn,q(u) contains exactly once
each length n q-ary word with no 0k factors and beginning by at most u 0s, and only them.
Now we show that two consecutive words in this list differ in a single position and by 1 or −1
in this position. To do this, considering the recursive definition (4) it is enough to show that
the last and first words in two consecutive lists in (4) differ in this way. Let L and M be such
consecutive lists.

When q is even, then either

• L = 0 · Hn−1,q(u − 1) and M = 1 · (Hn−1,q(k − 1)), or

• L = i · Hn−1,q(k − 1) and M = (i + 1) · (Hn−1,q(k − 1)) with even i ≥ 2, or

• L = i · Hn−1,q(k − 1) and M = (i + 1) · (Hn−1,q(k − 1)) with odd i.

In the first two cases we have:

• last(L) = 0 · last(Hn−1,q(u − 1)) = 0(q − 1)0k−1α1α2 . . . αn−k−1, and

• first(M) = 1 · first(Hn−1,q(k − 1)) = 1 · last(Hn−1,q(k − 1)) =
= 1(q − 1)0k−1α1α2 . . . αn−k−1,

and in the last case

• last(L) = i · last(Hn−1,q(k − 1)) = i · first(Hn−1,q(k − 1)) = i0k−1α1α2 . . . αn−k, and

• first(M) = (i + 1) · first(Hn−1,q(k − 1)) = (i + 1)0k−1α1α2 . . . αn−k,

and in any case last(L) and first(M) differ in the desired way.
When q is odd, the proof is similar and if i is even we have

• last(L) = i(q − 1)n−1, and

• first(M) = (i + 1)(q − 1)n−1,

and if i is odd

• last(L) = i0k−11(q − 1)n−k−1, and

• first(M) = (i + 1)0k−11(q − 1)n−k−1,

and again, in both cases last(L) and first(M) differ in the desired way. �

Corollary 1. The list Hn,q(k− 1) is a Gray code for the set of words in [q]n with no 0k factors.

See Table 1 (a) for the list H6,2(1) with k = 2.

As previously, let fix a k ≥ 2 and for 0 ≤ u ≤ k − 1 let us define the list J
(k)
n,q (u) = Jn,q(u)

as:

Jn,q(u) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

λ if n = 0,

©q−1

i=1
i · (Jn−1,q(k − 1))i if n = 1 or

n > 1 and u = 0,

0 · Jn−1,q(u − 1) ◦ ©q−1

i=1
i · (Jn−1,q(k − 1))i if n > 1 and u > 0.

(5)

5

1 0 1 1 0 1 1
2 0 1 1 0 1 0
3 0 1 1 1 1 0
4 0 1 1 1 1 1
5 0 1 1 1 0 1
6 0 1 0 1 0 1
7 0 1 0 1 1 1
8 0 1 0 1 1 0
9 1 1 0 1 1 0
10 1 1 0 1 1 1
11 1 1 0 1 0 1
12 1 1 1 1 0 1
13 1 1 1 1 1 1
14 1 1 1 1 1 0
15 1 1 1 0 1 0
16 1 1 1 0 1 1
17 1 0 1 0 1 1
18 1 0 1 0 1 0
19 1 0 1 1 1 0
20 1 0 1 1 1 1
21 1 0 1 1 0 1

1 1 2 2 2 22 2 1 2 1
2 1 2 2 1 23 2 1 1 1
3 1 2 1 1 24 2 1 1 2
4 1 2 1 2 25 2 1 0 2
5 1 2 0 2 26 2 1 0 1
6 1 2 0 1 27 2 2 0 1
7 1 1 0 1 28 2 2 0 2
8 1 1 0 2 29 2 2 1 2
9 1 1 1 2 30 2 2 1 1
10 1 1 1 1 31 2 2 2 1
11 1 1 2 1 32 2 2 2 2
12 1 1 2 2
13 1 0 2 2
14 1 0 2 1
15 1 0 1 1
16 1 0 1 2
17 2 0 1 2
18 2 0 1 1
19 2 0 2 1
20 2 0 2 2
21 2 1 2 2

1 0 0 1 3 1 22 0 0 2 3 3
2 0 0 1 3 2 23 0 0 2 3 2
3 0 0 1 3 3 24 0 0 2 3 1
4 0 0 1 2 3 25 0 0 3 3 1
5 0 0 1 2 2 26 0 0 3 3 2
6 0 0 1 2 1 27 0 0 3 3 3
7 0 0 1 1 1 28 0 0 3 2 3
8 0 0 1 1 2 29 0 0 3 2 2
9 0 0 1 1 3 30 0 0 3 2 1
10 0 0 1 0 3 31 0 0 3 1 1
11 0 0 1 0 2 32 0 0 3 1 2
12 0 0 1 0 1 33 0 0 3 1 3
13 0 0 2 0 1 34 0 0 3 0 3
14 0 0 2 0 2 35 0 0 3 0 2
15 0 0 2 0 3 36 0 0 3 0 1
16 0 0 2 1 3
17 0 0 2 1 2
18 0 0 2 1 1
19 0 0 2 2 1
20 0 0 2 2 2
21 0 0 2 2 3

(a) (b) (c)

Table 1: The Gray code list: (a) H
(2)
6,2(1) for the set of length 6 binary words with no two consecutive 0s;

(b) J
(2)
4,3 (0) for the set of length 4 ternary words with no two consecutive 0s and beginning and ending

by a non-zero symbol; and (c) S
(2)
5,4 for the set of cross-bifix-free words S

(2)
5,4 obtained by prepending 00 to

each word in J
(2)
3,4 (0).

Proposition 4. The last and first words in the list Jn,q(u) are given by:

• If q is even, let f = f1f2 . . . fn = first(Hn,q(u)) and ℓ = ℓ1ℓ2 . . . ℓn = last(Hn,q(u)). Then

– first(Jn,q(u)) =

{

f1f2 . . . fn if fn 6= 0,
f1f2 . . . fn−11 if fn = 0.

– last(Jn,q(u)) =

{

ℓ1ℓ2 . . . ℓn if ℓn 6= 0,
ℓ1ℓ2 . . . ℓn−11 if ℓn = 0.

• If q is odd, then

– first(Jn,q(u)) = 0u1(q − 1)n−u−1,

– last(Jn,q(u)) = (q − 1)n.

Proof. The proof is similar to the one in Proposition 2 and imposing that the last symbol
of first(Jn,q(u)) and last(Jn,q(u)) is not 0, then the thesis holds. �

Proposition 5. The list Jn,q(u) is a Gray code for the set of words in [q]n which begin by at
most u 0s, have no 0k factors and end by a non-zero symbol.

6

Proof. The proof is similar to the one in Proposition 3. �

Corollary 2. The list Jn,q(0) is a prefix partitioned 1-Gray code for the set of words in [q]n

which have no 0k factors and begin and end by a non-zero symbol.

Note that, from the recursive relation (5), the words in Jn,q(0) with the same prefix are consec-
utively generated, as the reader can easily check using inductive arguments. See Table 1 (b) for
the list J4,3(0) with k = 2.

Remark 1.

• For u = 0, 1, . . . k − 1, Jn,q(u) ⊂ Hn,q(u); and

• for u = 0, 1, . . . k − 2, Jn,q(u) ⊂ Jn,q(u + 1) and Hn,q(u) ⊂ Hn,q(u + 1).

Finally, the Gray code list S
(k)
n+k,q for the set of cross-bifix-free words S

(k)
n+k,q is obtained from

the list Jn,q(0) by prepending to each word in Jn,q(0) the prefix 0k; see Table 1 (c) for the list

S
(2)
5,4 .

3 Generating algorithms

Algorithm gen J in Figure 1 is a direct implementation of the recursive definition of the list
Jn,q(u) given by relation (5). Integer variables n, q, k and array b are global and the call of

gen J(1,0,0) produces the Gray code J
(k)
n,q (0) for the set of length n q-ary words with no 0k

factors and beginning and ending by a non-zero symbol; and prepending 0k to each word in

J
(k)
n,q (0) the Gray code list S

(k)
n+k,q is obtained. For example, when n = 4, q = 3 and k = 2, the

call of gen J(1,0,0) produces the list in Table 1 (b).
Before proving Proposition 7 we need the following result.

Proposition 6. For q, k ≥ 2, the integer sequence (f
(k)
n,q)n≥0 defined in relation (1) satisfies

n−1
∑

i=0

f
(k)
i,q ≤ 2 · f (k)

n,q . (6)

Proof. Indeed, for n < k, f
(k)
n,q = qn, and it is routine to check the result. Now let us suppose

the result true for any n < m, and let us prove it for m.

m
∑

i=0

f
(k)
i,q =

m−2
∑

i=0

f
(k)
i,q + f

(k)
m−1,q + f (k)

m,q

≤

m−2
∑

i=0

f
(k)
i,q + f

(k)
m+1,q

≤ 2f
(k)
m−1,q + f

(k)
m+1,q

≤ f
(k)
m−1,q + f (k)

m,q + f
(k)
m+1,q

≤ 2f
(k)
m+1,q,

and induction on n completes the proof. �

7

Proposition 7. Procedure gen J has a constant amortized time complexity.

Proof. Let Jn,q(u) be the underlying set of the list Jn,q(u), that is the set of words in [q]n

which begin by at most u 0s, have no 0k factors and end by a non-zero symbol. By the second
point of Remark 1 we have

Jn,q(0) ⊂ Jn,q(1) ⊂ . . . ⊂ Jn,q(k − 1),

and since
|Jn,q(0)| = (q − 1)2f

(k)
n−2,q

it follows that
(q − 1)2f

(k)
n−2,q ≤ |Jn,q(u)| (7)

for n ≥ 2 and 0 ≤ u ≤ k − 1, and with f
(k)
n,q defined in relation (1), see also relation (2).

Similarly, let Hn,q(u) be the underlying set of the list Hn,q(u), that is the set of words in [q]n

which begin by at most u 0s, and have no 0k factors. Again by the second point of Remark 1
we have

Hn,q(0) ⊂ Hn,q(1) ⊂ . . . ⊂ Hn,q(k − 1),

and since
|Hn,q(k − 1)| = f (k)

n,q

it follows that
|Hn,q(u)| ≤ f (k)

n,q (8)

for n ≥ 0 and 0 ≤ u ≤ k − 1.
The total amount of computation of the procedure gen J is proportional to the number of

recursive calls of this procedure. Each call of gen J produces either a proper prefix of a word in
Jn,q(u), that is a word in Hi,q(u) for some i < n, or a word in Jn,q(u) which is output, and so,
the total amount of computation of this procedure is proportional to

n−1
∑

i=0

|Hi,q(u)| + |Jn,q(u)|,

and the average complexity is proportional to
∑n−1

i=0 |Hi,q(u)| + |Jn,q(u)|

|Jn,q(u)|
=

∑n−1
i=0 |Hi,q(u)|

|Jn,q(u)|
+ 1

≤

∑n−1
i=0 f

(k)
i,q

(q − 1)2 · f
(k)
n−2,q

+ 1 (by relations (7) and (8))

≤
2 · f

(k)
n,q

(q − 1)2 · f
(k)
n−2,q

+ 1 (by Proposition 6)

≤
2 · q2 · f

(k)
n−2,q

(q − 1)2 · f
(k)
n−2,q

+ 1 (considering f
(k)
i,q ≤ q · f

(k)
i−1,q)

≤ 9.

Thus, the average complexity of the procedure gen J is bounded by a constant.
�

8

procedure gen J(pos,dir,u)

if pos = n + 1
then output b;

else if dir = 0
then if u > 0 and pos 6= n

then b[pos] := 0; gen J(pos + 1,0,u − 1);
end if

for i := 1 to q − 1 do

b[pos] := i; gen J(pos + 1,i mod 2,k − 1);
else for i := q − 1 downto 1 do

b[pos] := i; gen J(pos + 1,(i + 1) mod 2,k − 1);
if u > 0 and pos 6= n

then b[pos] := 0; gen J(pos + 1,1,u − 1);
end if

end if

end if

end procedure.

Figure 1: Algorithm producing the list Jn,q(u), defined in relation (5).

4 Conclusions and further developments

We presented a prefix partitioned Gray code for the cross-bifix-free set of q-ary words of length
n containing exactly once the factor 0k studied in [6], which for fixed q, n and k has, to our
knowledge, the greatest cardinality.

Our strategy, outlined in Introduction, uses two strictly related lists (namely, the Gray codes
Hn,q(u) and Jn,q(u) defined in Section 2) in order to define the desired Gray code, denoted by

S
(k)
n+k,q

. Moreover, the two lists are crucial in the proof of Proposition 7 stating the efficiency of

procedure gen J, generating our Gray code S
(k)
n+k,q. In particular, this Gray code is obtained by

prepending the prefix 0k to each word in the list Jn,q(0) of q-ary words of length n with no 0k

factors and which begin and end with a non-zero symbol.
From Proposition 4 it is directly seen that when q is odd, the first and the last word in the

list Jn,q(0) differ in the same way as any two consecutive words in this list (in a single position
and by 1 or −1 in this position), and thus Jn,q(0) is a cyclic Gray code; consequently, for q odd

so is S
(k)
n+k,q

. This is not longer true for q even: the first and the last word in S
(k)
n+k,q

can differ
in arbitrary many positions; and it should be interesting to find a cyclic Gray code for the set
of cross-bifix-free words under consideration, independently on the parity of q.

References

[1] Bajic, D. On Construction of Cross-Bifix-Free Kernel Sets. 2nd MCM COST 2100,
TD(07)237, Lisbon, Portugal (2007).

[2] Bajic, D. A simple suboptimal construction of cross-bifix-free codes. Cryptography and
Communications 6(1) 27–37 (2014).

9

[3] Baril, J., Vajnovszki, V. Gray code for derangements. Discrete Applied Mathematics 140

207–221 (2004).

[4] Berstel, J., Perrin, D. and Reutenauer, C. Codes and Automata (Encyclopedia of Mathe-
matics and its Applications). Cambridge University Press (2009).

[5] Bilotta, S., Pergola, E. and Pinzani, R. A new approach to cross-bifix-free sets. IEEE
Transactions on Information Theory 58 4058–4063 (2012).

[6] Chee, Y.M., Kiah, H.M., Purkayastha, P. and Wang, C. Cross-bifix-free codes within a
constant factor of optimality. IEEE Transactions on Information Theory 59 4668–4674
(2013).

[7] Crochemore, M., Hancart, C. and Lecroq, T. (2007) Algorithms on strings. Cambridge
University Press, Cambridge (2007).

[8] Er, M.C. On generating the N -ary reflected Gray code. IEEE Transactions on Computer
33 739–741 (1984).

[9] Gray, F. Pulse Code Communication. U.S. Patent 2 632 058 (1953).

[10] Hamming, R.W. Error detecting and error correcting codes. Bell System Technical Journal
29 147–160 (1950).

[11] Joichi, J., White, D.E. and Williamson, S.G., Combinatorial Gray codes. Siam J. on Com-
puting 9 130–141 (1980).

[12] Knuth, D.E. The Art of Computer Programming. Vol. 3, “Sorting and Searching”, Addison-
Wesley, Reading, MA (1973).

[13] Levesque, C. On m-th order linear recurrences. Fibonacci Quarterly 23 290–293 (1985).

[14] de Lind van Wijngaarden, A.J. and Willink, T. J. Frame synchronization using distributed
sequences. IEEE Transactions on Commununications 48 2127–2138 (2000).

[15] Ludman, J.E. Gray code generation for MPSK signals. IEEE Transactions on Communi-
cations 29 1519–1522 (1981).

[16] Johnson, S.M. Generation of permutations by adjacent transpositions. Math. Comp. 17

282–285 (1963).

[17] Nielsen, P.T. A Note on Bifix-Free Sequences. IEEE Transaction Information Theory 29

704–706 (1973).

[18] Shork, M. The r-generalized Fibonacci numbers and Polynomial coefficients. International
Journal of Contemporary Mathematical Sciences 3 1157–1163 (2008).

[19] Vajnovszki, V. Gray visiting Motzkin Acta Informatica 38 793–811 (2002).

[20] Walsh, T. Gray codes for involutions. Journal of Combinatorial Mathematics and Combi-
natorial Computing 36 95–118 (2001).

10

[21] Walsh, T. Generating Gray Codes in O(1) worst-case time per word. Lecture Notes in
Computer Science 2731 73–88 (2003).

[22] Williamson, S.G. Combinatorics for computer science. Computer Science Press, Rockville,
Maryland (1985).

11

