
Generating restricted classes of involutions, Bell and StirlingpermutationsMaddalena PonetiDipartimento di Scienze Matematiche e Informatiche \R. Magari"Universit�a di Siena, Pian dei Mantellini 44, Siena - Italyponeti@unisi.itVincent VajnovszkiLE2I, Universit�e de BourgogneBP 47870, 21078 Dijon Cedex, Francevvajnov@u-bourgogne.frJuly 8, 2008AbstractWe present a recursive generating algorithm for unrestricted permutations which is basedon both the decomposition of a permutation as a product of transpositions and as a union ofdisjoint cycles. It generates permutations at each recursive step and slight modi�cations ofit produce generating algorithms for Bell permutations and involutions. Further re�nementsyield algorithms for these classes of permutations subject to additional restrictions: a givennumber of cycles or/and �xed points. As particular cases, we obtain generating algorithmsfor permutations counted by the Stirling numbers of the �rst and second kind, even permu-tations, �xed-point-free involutions and derangements. All these algorithms run in constantamortized time.1 Introduction and motivationThere is a great deal of literature on the exhaustive generation of permutations, beginningwith the campanologists' historical works [19, 21] followed by more systematical approaches[11, 13, 20, 22]; see [18] for a survey or the seminal book of D. Knuth [14]. More recently, agreat interest was shown in the generation of particular classes of permutations: involutions [25],derangements [3], with �xed number of cycles [2] or inversions [7, 24], with forbidden patterns [6].A recursive generating algorithm is given in [4] where Catalan objects are generated at eachrecursive step (not only terminal ones) and in [23] particular classes of permutations are gener-ated based on their representation as product of transpositions. The present work is motivatedby these papers. More precisely, here we give a new generating algorithm for unrestricted permu-tations which is based on both the decomposition of a permutation as a product of transpositionsand as a union of disjoint cycles. As in [4] our algorithm generates objects at each recursive stepand we show that a slight modi�cation of it produces similar algorithms for Bell permutationsand involutions. Further re�nements yield algorithms for these classes of permutations subjectto additional restrictions: a given number of cycles or/and �xed points. As particular cases,1



we obtain generating algorithms for permutations counted by the Stirling numbers of the �rstand second kind, even permutations, �xed-point-free involutions and derangements. All thesealgorithms run in constant amortized time. This is the �rst paper presenting an algorithm whereits versions produce a large number of classes of restricted permutations and it is an extendedform of the preliminary conference version of [8].2 PreliminariesA length-n permutation is a bijection from the set [1; n] = f1; 2; : : : ; ng onto itself. The morecommon representation of a permutation � is the one-line notation: �(1) �(2) : : : �(n). Twoalternative powerful ways to represent a permutation are the standard decomposition and cyclerepresentation, both de�ned below. In the following we denote by Sn the set of all n! length-npermutations.2.1 Standard decompositionWe denote by h`; ji the transposition of the element in position ` and the element in position j,that is the permutation � of appropriate length with �(i) = i for all i, except �(`) = j and �(j) =`; clearly h`; ji= hj; `i. For instance the permutation 4 2 3 1 2 S4 is the transposition h1; 4i andthe product of a permutation with a transposition is the usual product of two permutations,e.g., if � = 2 1 3 4 2 S4 then � � h1; 4i= 4 1 3 2.Lemma 1. Any permutation � 2 Sn can uniquely be written� = nYi=1hpi; ii = hp1; 1i � hp2; 2i � hp2; 3i � : : : � hpn; ni with pi 2 [1; i]: (1)Proof. In spite of this result being quite intuitive and folkloric we give below a constructiveproof because this construction will be used later. For any � 2 Sn we construct iteratively then-sequence (p1; p2; : : : ; pn) 2 [1; 1]� [1; 2]� : : :� [1; n] which satis�es relation (1): Run throughthe entries of � from right to left, setting pi = ��1(i) and replacing � by � � h��1(i); ii. Inparticular, when i is a �xed point in the current permutation (i.e., �(i) = i), then pi = i andh��1(i); ii is the identity.Intuitively, what we do is to construct ��1 by sorting � using selection sort: for i running fromn down to 1 we move i (which is in one of the positions 1; 2; : : : ; i) into position i by exchangingit with the element that is in position i. Since the permutation we use to sort � is the inverse ofthe permutation given in the right side of (1), the original permutation � equals Qni=1hpi; ii andthis construction is an injective mapping from Sn to [1; 1]� [1; 2]� : : :� [1; n]. Finally, cardinalityarguments show that this construction yields a bijection from Sn onto [1; 1]�[1; 2]�: : :�[1; n].For example, the decomposition of � = 4 1 3 2 given by relation (1) is h1; 1i�h1; 2i�h3; 3i�h1; 4i.If we relax the condition pi 2 [1; i], then the decomposition of a permutation as product oftranspositions is not necessarily unique, for instance the permutation � above can be written ash4; 1i � h4; 2i � h3; 3i � h4; 4i. For a permutation � 2 Sn, its decomposition given by (1) is called itsstandard decomposition.Recall that given a group G with a generating set U � G, the directed Cayley graph isconstructed as follows: the vertex set is G and there is a directed edge from a to b if there2



exists u 2 U with b = a � u. If the generating set is such that u 2 U implies that u�1 2 U ,then the Cayley graph is called undirected. See for example [10] for more details about Cayleygraphs. Actually, the decomposition in relation (1) gives the path from 1 2 : : : n 2 Sn to � in aspanning tree of the undirected Cayley graph of the permutations group Sn with generating setfh`; jig1�`<j�n. For n = 4 such a tree is depicted in Figure 1.2.2 Cycle representationA cycle C in a permutation � 2 Sn is a sequence C = (a0a1 : : : aj�1) such that �(ai) =a(i+1) mod j for all i, 0 � i � j � 1. Obviously, the cycle (aiai+1 : : : aj�1a0a1 : : : ai�1) is equiv-alent to the cycle C and we choose to represent cycles with their smallest element last. Anypermutation is the union of disjoint cycles and the cycle representation of a permutation is ob-tained by imposing the condition that the cycles are written in increasing order of their smallestelement (that is, their last element); for example, the cycle representation of 4 2 5 1 7 6 3 2 S7is (4 1)(2)(5 7 3)(6). It is worth mentioning that if �0 is the permutation in Sn obtained from� 2 Sn by erasing the parentheses in the cycle representation of �, then � can be uniquely re-covered from �0 and the transformation � ,! �0 is a bijection from Sn onto itself. This mappingis essentially the transformation fondamentale of [9, Proposition 1.3.1], see also [17, p. 17].The standard decomposition and cycle representation are intimately related. For � 2 Snwith its standard decomposition given by relation (1) let j be a position such that pi = i for alli � j. It follows that j is a �xed point of � and so the rightmost deranged point in � (that is,the largest i with �(i) 6= i) equals the largest i with pi 6= i. This makes consistent the followingde�nition: For � 2 Sn, D(�) = maxi f�(i) 6= ig = maxi fpi 6= ig, and by convention if � has noderanged points (that is, � is the identity permutation), then D(�) = 1. We note that it mighthappen that pi = i but �i 6= i when i < D(�).Lemma 2. Let � 2 Sn and j be a �xed point for �. For any ` 6= j, 1 � ` � n, we have1. � � h`; ji is the permutation obtained from � by inserting j into the cycle containing `between ` and �(`).2. if � has k cycles, then � � h`; ji has k � 1 cycles.Proof. 1. If ` is also a �xed point for � the statement is obvious; otherwise it results directlyfrom the form of � and � � h`; ji given below.� = � � � � ` � � � j � � �� � � �(`) � � � j � � � �� � h`; ji= � � � � ` � � � j � � �� � � j � � � �(`) � � � � :2. Multiplying � by h`; ji results in the merging of two cycles: the cycle containing ` and thelength-one cycle containing j.Observe that, with the notations above, the number of �xed points of � � h`; ji equals thoseof �, minus two if ` is a �xed point of � or minus one otherwise.We denote by Sn;k the set of permutations in Sn with exactly k cycles and its cardinality isthe signless Stirling number of the �rst kind [17, p. 18]. The next corollary is a particular caseof the previous lemma. 3



Corollary 1. Let � be a permutation in Sn;k such that D(�) < n. For any j, D(�) < j � n,and any `, 1 � ` < j, the permutation � = � � h`; ji is in Sn;k�1.The lemma below shows that each length-n permutation with k cycles, other than the identityone, can be obtained uniquely from a permutation with k+1 cycles by the above transformationand it is the core of our generating algorithms.Lemma 3. For each � 2 Sn;k, k 6= n, there exists a unique triplet (�; `; j) such that � = � � h`; jiwhere:� � 2 Sn;k+1 with D(�) < D(�),� j > D(�),� ` < j.Proof. Firstly, since k 6= n, � is not the identity permutation, and so D(�) > 1. Let Qni=1hpi; iibe the standard decomposition of �, and de�ne: j = D(�), ` = pj and � = Qni=1hti; ii withti = pi for all i except that tj = j. Then, � = � � h`; ji and the triplet (�; `; j) satis�es thestatement of the lemma and the uniqueness results from the unique standard decompositionof �.The generating tree induced by the recursive construction of Sn = [nk=1Sn;k, given by Lemma3 for n = 4, is presented in Figure 1: 1 2 : : : n is the root and if � 2 Sn;k+1 is the parent of� 2 Sn;k , then the transposition h`; ji which precedes � is such that � = � � h`; ji.2.3 Bell permutationsDe�nition 1. The set Bn of length-n Bell permutations is the set of permutations in Sn, whereeach cycle is a decreasing sequence of integers (assuming that cycles are represented with theirsmallest element last).Bn is in bijection with the set of all partitions of [1; n]: each cycle in � 2 Bn repre-sents a block of the partition. For instance the partition corresponding to 4 2 7 1 3 6 5 2 S7is f4; 1gf2gf7; 5; 3gf6g; thus, Bn is counted by the nth Bell number (sequence A000110 in [16]).See also [12] for an alternative de�nition of Bell permutations in terms of pattern avoidance.In the standard decomposition Qni=1hpi; ii of � 2 Sn we say that two transpositions hpu; uiand hpv; vi, u < v, meet if pv 2 fpu; ug and meet at left if pv = pu. Although we do not use thisfact below, it is interesting to note that a short proof reveals that � is a Bell permutation i�any two transpositions in the standard decomposition of � that meet must meet at left.We say that i is a tail of � 2 Sn if i is minimal in its cycle. In particular if � 2 Bn, then�(i) is the largest element of that cycle. We denote by Tail(�) the set of tails of � 2 Sn and byBn;k the set of Bell permutations with k cycles, and Bn;k is counted by the Stirling number ofthe second kind [17, pp. 33]. Below are the `Bell' counterparts of Corollary 1 and Lemma 3.Lemma 4. Let � be a permutation in Bn;k and D(�) < n. For any j, D(�) < j � n, and any` 2 Tail(�), 1 � ` < j, the permutation � = � � h`; ji is in Bn;k�1.Proof. By Lemma 2, j is inserted after ` in the cycle containing `, and � has k � 1 cycles.4



1234
h1; 2i 2134 h1; 3i 3124 h1; 4i 4123h2; 4i 3421h3; 4i 3142h2; 3i 2314 h1; 4i 4312h2; 4i 2413h3; 4i 2341h1; 4i 4132h2; 4i 2431h3; 4i 2143h1; 3i 3214 h1; 4i 4213h2; 4i 3412h3; 4i 3241h2; 3i 1324 h1; 4i 4321h2; 4i 1423h3; 4i 1342h1; 4i 4231h2; 4i 1432h3; 4i 1243Figure 1: The tree induced by the recursive construction of S4 given by Lemma 3. It corresponds tothe generating tree induced for n = 4 by the call gen N(), gen P(f1g,2) and the call gen A(f1g,2)with X = T [ fjg. Each permutation is preceded by the transposition which transforms its parent inthis permutation. The root, at level zero, is the identity permutation and at level d there are all thepermutations with 4� d cycles.
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1234 h1; 2i 2134 h1; 3i 3124 h1; 4i 4123h1; 4i 4132h3; 4i 2143h1; 3i 3214 h1; 4i 4213h2; 4i 3412h2; 3i 1324 h1; 4i 4321h2; 4i 1423h1; 4i 4231h2; 4i 1432h3; 4i 1243Figure 2: The tree induced by the recursive construction of B4 given by Lemma 5. It is the restrictionof the tree in Figure 1 to Bell permutations and corresponds to the generating tree induced by the callof gen A(f1g,2), for n = 4 and with X = T .Lemma 5. For each � 2 Bn;k, k 6= n, there exists a unique triplet (�; `; j) such that � = � � h`; jiwhere:� � 2 Bn;k+1 with D(�) < D(�),� j > D(�),� ` 2 Tail(�) and ` < j.In addition, Tail(�) = Tail(�) n fjg.Proof. As in the proof of Lemma 3, if Qni=1hpi; ii is the standard decomposition of �, thenj = D(�), ` = pj and � = � � h`; ji. It is easy to check that � 2 Bn;k+1, D(�) < D(�) andTail(�) = Tail(�) n fjg. The uniqueness is a consequence of Lemma 3.The generating tree induced by the recursive construction of Bn = [nk=1Bn;k , given byLemma 5 for n = 4, is presented in Figure 2.2.4 InvolutionsA permutation � 2 Sn is an involution if � �� is 1 2 3 : : : n, the identity in Sn; or equivalently, anycycle in � has length at most two. We denote by In (resp. In;k) the set of length-n involutions(resp. length-n involutions with k cycles); clearly k � dn2 e, In � Bn and In;k � Bn;k . For� 2 Sn we denote by Fix(�) the set of �xed points of � and so Fix(�) � Tail(�). Below arethe `involution' counterparts of Corollary 1 and Lemma 3. Their proofs are similar to those ofLemmata 4 and 5 and can be easily recovered by the reader.Lemma 6. Let � 2 In;k and D(�) < n. For any j, D(�) < j � n, and ` 2 Fix(�), 1 � ` < j,the permutation � = � � h`; ji is in In;k�1. 6



1234 h1; 2i 2134 h3; 4i 2143h1; 3i 3214 h2; 4i 3412h2; 3i 1324 h1; 4i 4321h1; 4i 4231h2; 4i 1432h3; 4i 1243Figure 3: The tree induced by the recursive construction of I4 given by Lemma 7. It is the restrictionof the tree in Figure 2 (and the one in Figure 1) to involutions and corresponds to the generating treeinduced by the call of gen A(f1g,2), for n = 4 and with X = T n f`g.Lemma 7. For each � 2 In;k, k 6= n, there exists a unique triplet (�; `; j) such that � = � � h`; jiwhere:� � 2 In;k+1 with D(�) < D(�),� j > D(�),� ` 2 Fix(�) and ` < j.In addition, Fix(�) = Fix(�) n f`; jg.The generating tree induced by the recursive construction of In = [nk=dn2 eIn;k , given byLemma 7 for n = 4, is presented in Figure 3.3 Generating algorithmsThe next remark gives the interpretation of Lemmata 3, 5 and 7 in terms of generating trees(or ECO operator), see for instance [1] and the references therein.Remark 1. Let � 2 Sn with D(�) < n and 1 < k � n.� If � 2 Sn;k, then de�ne S� = f� � h`; ji j j > D(�); ` < jg. By Lemma 3 it follows that thefamily fS�g�2Sn;k is a partition of Sn;k�1.� If � 2 Bn;k, then de�ne B� = f� � h`; ji j j > D(�); ` 2 Tail(�); ` < jg. By Lemma 5 itfollows that the family fB�g�2Bn;k is a partition of Bn;k�1.� If � 2 In;k, then de�ne I� = f� � h`; ji j j > D(�); ` 2 Fix(�); ` < jg. By Lemma 7 itfollows that the family fI�g�2In;k is a partition of In;k�1.Alternatively, S� (resp. B� , I�) is the set of successors of � in the generating tree induced byLemma 3 (resp. 5, 7); see Figure 1 (resp. 2, 3).As an application of Lemma 3 and with the �rst point of the remark above we obtain thenaive algorithm, gen N in Figure 4 (a), for generating the set Sn; n and � are a global variablesand initially � = 1 2 : : :n. If in a particular call the current permutation is �, then it produces7



S�, and gen N is recursively called for each permutation in S�. Note that, after each recursivecall to gen N, the current permutation � is reset to its initial value before this call. See Figure 1for the generating tree induced by the call gen N() with n = 4 and Table 1 for the list producedby this call. Generally, gen N() produces Sn by covering the generating tree in pre-order, thatis, visiting the root then visiting recursively the sub-trees.This algorithm has two disadvantages: (i) to computeD(�) requires generally a linear time inn, and (ii) as can be seen in the last two points of Remark 1, for some classes of permutations, `does not cover an interval of integers. To eliminated these disadvantages we add to the generatingprocedure two additional parameters: q and T , where q = D(�) + 1 and T is the set of allowedvalues of ` for a given j. The procedure so obtained is gen P in Figure 4 (b). In this case themain call becomes gen P(f1g,2) which corresponds to the initial permutation � = 1 2 : : : n andgen P(T,q) produces several calls of gen P(T [ fq; q + 1; : : : jg,j + 1), one for each `, withj 2 [q; n]. Note that after an iteration on j is completed, j is added to T . Also the call of thisprocedure with q = n+1 simply prints the current permutation and does not produce recursivecalls.This algorithm remains ine�cient: sending a variable length set from a call to the nextrecursive call requires linear time and space. A last improvement is obtained by implementingthe set T as a global variable represented by a linked list which is reset to its original valueat the end of each call. In all the following algorithms, including Gen P with the above �nalimprovement but excluding gen N, each call performs a constant number of operations on T :the addition of the largest element of T (the statement T := T [ fjg or the call of gen P withT [ fjg as �rst parameter); the deletion of several of its largest elements (added iteratively bythe statement T := T [fjg at the end of the procedure); or the deletion of a given element (notnecessarily the last one).For the sake of conciseness, we choose to present all the algorithms with sets transmittedas parameters and having in mind that always a global linked list representation is possible forthese sets and all the operations on this list are e�cient; that is, done in constant time. Belowwe will use the following `CAT principles', which are slight modi�cations of those in [15], inorder to show that our algorithms produce classes of permutations in constant amortized time.We call a recursive generating algorithm amortized-recursive if the total amount of com-putation in each call is proportional to the number of direct calls produced by this call. Inother words, if in an algorithm each iteration of its loops (if any) produces a new recursive call,then it is amortized-recursive. In this case the total amount of computation of the algorithm isproportional to the total number of recursive calls, and we have:Lemma 8. (First CAT principle) A recursive generating algorithm runs in constant amortizedtime if it is amortized-recursive and each call (not only the terminal ones) produces a new object.In a recursive procedure we de�ne the degree of a particular call of the procedure to be thenumber of `immediate' calls that result.Lemma 9. (Second CAT principle) A recursive generating algorithm runs in constant amortizedtime if: (1) it is amortized-recursive, (2) each terminal call (degree-zero call) produces a newobject, and (3) the number of degree-one calls is in O(p), with p being the number of generatedobjects (or equivalently, the number of terminal calls).Proof. Let p be as in the statement of the lemma and denote by r the number of degree-one calls. If r = 0, then p � the number of recursive calls2 and the statement holds. Otherwise,p � (the number of recursive calls)�r2 and when r 2 O(p), again the statement holds.8



procedure gen N()local j; `;print(�);for j := D(�) + 1 to n dofor ` := 1 to j � 1 do� := � � h`; ji;gen N();� := � � h`; ji;end doend doend procedure.
procedure gen P(T,q)local j; `;print(�);for j := q to n dofor ` 2 T do� := � � h`; ji;gen P(T [ fjg,j + 1);� := � � h`; ji;end doT := T [ fjg;end doend procedure.(a) (b)Figure 4: (a) Algorithm producing the set Sn, and (b) its version where q = D(�) + 1 and the setT = [1; j � 1] are parameters of the procedure. The call gen P(f1g,2) produces Sn and in both cases nand � are global variables with � initialized by 1 2 : : : n.If in gen P we replace the �rst parameter of its recursive call by a generic parameter X ,then we obtain the algorithm gen A in Figure 5 (a), and for X = T [fjg we retrieve gen P. Thenext theorem says that, according to di�erent instances of X , gen A generates the sets Sn, Bnand In.Theorem 1. The algorithm gen A produces in constant amortized time:1. Unrestricted permutations if X = T [ fjg;2. Bell permutations if X = T ;3. Involutions if X = T n f`g.Proof. (1) As mentioned above, when X = T [ fjg, gen P and gen A coincide, and when thetransposition h`; ji is applied, then T = [1; j � 1] and ` 2 T .(2) If X = T , when the transposition h`; ji is applied to the current permutation, then ` 2 T =[1; j � 1] \ Tail(�) and by Lemma 5, gen A produces Bell permutations.(3) If X = T n f`g, when the transposition h`; ji is applied to the current permutation, then` 2 T = [1; j � 1] \ Fix(�) and, by Lemma 7, gen A produces involutions.In any case, gen A satis�es the �rst CAT principle, disregarding the operations on the set T .Finally, the implementation of T (as mentioned before Lemma 8) by a global variable representedby a linked list yields CAT algorithms.See Figures 1, 2 and 3 for the generating trees induced by the calls of gen A(f1g,2) withn = 4 and corresponding to di�erent instances of X . In Table 1 are the lists produced by thesecalls.Permutations with a given number of cyclesThe level of a particular call of a recursive algorithm is de�ned as follows: the main call has thelevel zero, and a recursive call at level d produces `immediate' calls at level d+1. By the second9



procedure gen A(T,q)local j; `;print(�);for j := q to n dofor ` 2 T do� := � � h`; ji;gen A(X,j + 1);� := � � h`; ji;end doT := T [ fjg;end doend procedure.
procedure gen K(T,q,d)local j; `;if d = n� kthen print(�);else for j := q to k + d+ 1 dofor ` 2 T do� := � � h`; ji;gen K(X,j + 1,d+ 1);� := � � h`; ji;end doT := T [ fjg;end doend ifend procedure.(a) (b)Figure 5: (a) The generalization of gen P; it produces the sets Sn, Bn and In according to di�erentinstances of X: Sn (for X = T [ fjg), Bn (for X = T ), In (for X = T n f`g). (b) Algorithm producingSn;k, Bn;k (k 6= 1) and In;k according to whether X = T [ fjg, X = T , X = T n f`g, respectively. d isthe level of the call and k, the number of cycles, is a global variable.point of Lemma 2, the permutations printed by gen A at level d have n � d cycles, and if weimpose the condition that permutations are printed only at level d = n� k, then the sets Sn;k,Bn;k and In;k are obtained. However, not every permutation at level less than n � k produceseventually a permutation at level n � k, and thus with k cycles. To ensure that the level n� kis reached it is enough to impose the condition that j � k + d + 1 on each call at level d. Thealgorithm thus obtained is gen K in Figure 5 (b). The main call is gen K(f1g,2,0), d is thelevel of the call and k, the number of cycles, is a global variable. The next theorem shows thatgen K is e�cient.Theorem 2. The algorithm gen K produces in constant amortized time:1. Permutations with k cycles (counted by the signless Stirling number of the �rst kind) ifX = T [ fjg;2. Bell permutations with k cycles, k 6= 1, (counted by the Stirling number of the second kind)if X = T ;3. Involutions with k cycles, k � dn2e, (and so with n � 2k �xed points) if X = T n f`g. Inparticular, gen K produces �xed-point-free involutions when 2k = n.Proof. (1) If k 6= 1, then each call of gen K has degree at least two; and when k = 1 thereis a single call of degree one, namely the call at level zero (the main call) which produces thepermutation 2 1 3 : : : n. We refer the reader to Figure 1 where the permutations with k cyclesare at level 4� k.(2) Suppose that k 6= 1 and that � is a Bell permutations obtained at level d < n� k. It is easyto check that Tail(�)\ [1; k+ d] has at least two elements and so � has at least two successors.We refer the reader to Figure 2 where the Bell permutations with k cycles are at level 4� k.10



S4 B4 I41234 X X2134 X X3124 X4123 X3421314223144312 S4 B4 I4241323414132 X24312143 X X3214 X X4213 X3412 X X S4 B4 I432411324 X X4321 X X1423 X13424231 X X1432 X X1243 X XTable 1: The lists for the sets S4, B4 and I4 (read from top to bottom and from left to right). Theyare generated by the call gen A(f1g,2) for n = 4 and with X = T [ fjg, X = T and X = T n f`g,respectively, and are obtained by covering in pre-order the generating trees in Figures 1, 2 and 3.(3) Suppose that k � dn2 e and that � is an involution at level d < n� k. In this case k� d � 1.Indeed, d < n � k combined with n � 2k implies that d < k; so k � d � 1. It is easy to checkthat k � d = 1 occurs only when n is even and k = d+ 1 = n2 .On the other hand, � has n � d cycles and thus at least n � 2d �xed points, and n � k � dof them are k + d + 1; k + d + 2; : : : ; n. Thus, the number of ` 2 Fix(�), ` < j = k + d + 1, isat least (n� 2d)� (n � k � d) = k � d � 1, and each call has degree at least two, except for neven, k = n2 and d = n2 � 1, which corresponds to the involutions on the last but one level inthe generating tree for even n and k = n2 . We refer the reader to Figure 3 where the involutionswith k cycles are at level 4� k.Neglecting the operations on the set T , in each of the three cases gen K satis�es the secondCAT principle. As above, the implementation of T by a linked list yields CAT algorithms.Note that gen K does not generate e�ciently the singleton set Bn;1 = fn 1 2 : : : (n� 1)g.Corollary 2. If the algorithm gen K prints permutations at each level d � n � k (not only atlevel d = n � k), then it produces the same three classes of permutations but with at least kcycles.In a permutation � 2 Sn a couple (i; j) is an inversion if i < j but �(i) > �(j). A permutationis called even (resp. odd) if it has an even (resp. odd) number of inversions. The set of evenpermutations forms a subgroup of Sn denoted by An, called the alternating group, and itscardinality is n!2 .Corollary 3. If n is even, then the permutations produced by gen A at even levels are even andat odd levels are odd. Conversely, if n is odd, then the permutations produced at even level areodd and those produced at odd level are even.Proof. The permutation � 2 Sn is even i� the number of even-length cycles in � is even; see [5,pp. 77]. 11



Permutations with a given number of �xed pointsBefore the �rst call to gen P, the initial permutation is 1 2 : : : n and it has the maximal numberof �xed points, and as mentioned after Lemma 2, the number of �xed points of � � h`; ji ingen P decreases by two or by one, according to whether ` is a �xed point of � or not. If weimpose on gen P the condition that only length-n permutations with f �xed points are printed(f 2 f0; 1; : : : ; n� 2; ng), then the resulting algorithm is ine�cient: not every permutation withmore than f �xed points eventually produces a permutation with f �xed points. Note thatpermutations with f �xed points, f < n, are obtained at each level d � 1, with n � 2d � f �n� d� 1.Here we show how to modify the algorithm gen P in order to obtain a CAT generatingalgorithm for permutations with exactly f �xed points. The algorithm thus obtained is gen F inFigure 6 and as in procedure gen K we introduce a third parameter, e. If � is the permutationcorresponding to a given call of gen F(T,q,e), then q and T have the same meaning as in gen Pand the number of �xed point of � is f + e (e is the �xed points `excess'); so permutation areprinted when e = 0 and the main call, corresponding to 1 2 : : : n is gen F(f1g,2,n � f). Inparticular, when f = 0 the algorithm produces derangements. The upper bound n� d e2e+ 1 inthe loop on j ensures that the current call eventually makes calls with e = 0 and thus producespermutations with f �xed points, and when j = n � b e2c + 1, then ` must be a �xed point ofthe current permutation. By simple calculation, it can be shown that each call to gen F hasdegree at least two, except possibly at most p of them, with p being the number of generatedpermutations. By a careful linked list implementation of the involved sets, the algorithm thusobtained runs in constant average time. This is formally stated in Theorem 3; see also Figure 7.Theorem 3. The algorithm gen F produces in constant amortized time permutations with agiven number of �xed points.Combining this result with the previous cases (Bell permutations and/or permutations witha given number of cycles) we obtain:Corollary 4.� If gen F prints permutations at a given level d (resp. at each level � d), with d � 1 andn � 2d � f � n � d� 1, then it produces permutations with f �xed point and with n � dcycles (resp. with at least n� d cycles).� Changing the �rst parameter of gen F in its inner call from T [ fjg to T the obtainedalgorithm produces Bell permutations with a given number �xed points. In this case ifgen F prints permutations at a given level d (resp. at each level � d), with d � 1 andn � 2d � f � n � d � 1, then it produces Bell permutations with f �xed point and withn� d cycles (resp. with at least n� d cycles).4 Final remarksThe generating algorithms presented in this paper can easily be modi�ed in order to produceother classes of permutations: permutations with at least a given number of �xed points orBell permutations with a bounded cycle lengths. Can the techniques presented here be appliedto generate other classes of objects? Also, our algorithms produce permutations by covering12



procedure gen F(T,q,e)local j; `,a,U;if e = 0 then print(�);else for j := q to n � d e2e+ 1 doif j = n � b e2c+ 1then U := T \ Fix(�);else if e = 1then U := T n Fix(�);else U := T;endifendiffor ` 2 U doif ` 2 Fix(�)then a := e � 2;else a := e � 1;endif� := � � h`; ji;gen(T [ fjg,j + 1,a);� := � � h`; ji;end doT := T [ fjg;end doend procedure.Figure 6: Algorithm producing the length-n permutations with f �xed points. The main call isgen F(f1g,2,n� f), n and � are global variables and initially � = 12 : : : n.a generating tree and every two consecutive permutations on a branch of this tree di�er by atransposition. Does an order exist to cover the whole tree so that two consecutive permutationsdi�er by a transposition, that is, permutations are listed in Gray code?Acknowledgment. Special thanks are due to an anonymous referee for a very careful readingof a not so careful manuscript.References[1] S. Bacchelli, E. Barcucci, E. Grazzini, E. Pergola, Exhaustive generation of combinatorialobjects by ECO, Acta Informatica, 2004, 40(8), 585-602.[2] J.-L. Baril, Gray code for permutations with a �xed number of cycles, Discrete Mathematics,2007, 307, 1559{1571.[3] J-L. Baril, V. Vajnovszki, Gray Code for Derangements, Discrete Applied Mathematics,2004, 140(1-3), 207{221,[4] A. Bernini, I. Fanti, E. Grazzini, An exhaustive generation algorithm for Catalan objectsand others, PU.M.A., 2006, 17(1-2), 39-53.13
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