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Abstract

We present a recursive generating algorithm for unrestricted permutations which is based
on both the decomposition of a permutation as a product of transpositions and as a union of
disjoint cycles. It generates permutations at each recursive step and slight modifications of
it produce generating algorithms for Bell permutations and involutions. Further refinements
yield algorithms for these classes of permutations subject to additional restrictions: a given
number of cycles or/and fixed points. As particular cases, we obtain generating algorithms
for permutations counted by the Stirling numbers of the first and second kind, even permu-
tations, fixed-point-free involutions and derangements. All these algorithms run in constant
amortized time.

1 Introduction and motivation

There is a great deal of literature on the exhaustive generation of permutations, beginning
with the campanologists’ historical works [19, 21] followed by more systematical approaches
[11, 13, 20, 22]; see [18] for a survey or the seminal book of D. Knuth [14]. More recently, a
great interest was shown in the generation of particular classes of permutations: involutions [25],
derangements [3], with fixed number of cycles [2] or inversions [7, 24], with forbidden patterns [6].

A recursive generating algorithm is given in [4] where Catalan objects are generated at each
recursive step (not only terminal ones) and in [23] particular classes of permutations are gener-
ated based on their representation as product of transpositions. The present work is motivated
by these papers. More precisely, here we give a new generating algorithm for unrestricted permu-
tations which is based on both the decomposition of a permutation as a product of transpositions
and as a union of disjoint cycles. As in [4] our algorithm generates objects at each recursive step
and we show that a slight modification of it produces similar algorithms for Bell permutations
and involutions. Further refinements yield algorithms for these classes of permutations subject
to additional restrictions: a given number of cycles or/and fixed points. As particular cases,



we obtain generating algorithms for permutations counted by the Stirling numbers of the first
and second kind, even permutations, fixed-point-free involutions and derangements. All these
algorithms run in constant amortized time. This is the first paper presenting an algorithm where
its versions produce a large number of classes of restricted permutations and it is an extended
form of the preliminary conference version of [8].

2 Preliminaries

A length-n permutation is a bijection from the set [1,n] = {1,2,...,n} onto itself. The more
common representation of a permutation 7 is the one-line notation: #(1)7(2)...7(n). Two
alternative powerful ways to represent a permutation are the standard decomposition and cycle
representation, both defined below. In the following we denote by S, the set of all n! length-n
permutations.

2.1 Standard decomposition

We denote by ((, j) the transposition of the element in position ¢ and the element in position j,
that is the permutation 7 of appropriate length with 7(¢) = i for all 7, except 7 (¢) = j and 7(j) =
0; clearly (¢,7) = (j, (). For instance the permutation 4231 € Sy is the transposition (1,4) and
the product of a permutation with a transposition is the usual product of two permutations,
eg.,if 7=2134¢€ 94 then 7-(1,4)=4132.

Lemma 1. Any permutation m € S,, can uniquely be written

n

m =110 = (P, 1) (2, 2) - (p2,3) - - .- (pay ) with p; € [1,4]. (1)

=1

Proof. In spite of this result being quite intuitive and folkloric we give below a constructive
proof because this construction will be used later. For any x € 5, we construct iteratively the
n-sequence (p1,pa,...,pn) € [1,1] X [1,2] X ... X [1,n] which satisfies relation (1): Run through
the entries of 7 from right to left, setting p; = 7~ 1(i) and replacing = by x - (z71(i),7). In
particular, when 7 is a fixed point in the current permutation (i.e., 7(¢) = 7), then p; = ¢ and
(r71(7),1) is the identity.

Intuitively, what we do is to construct #~! by sorting 7 using selection sort: for ¢ running from
n down to 1 we move ¢ (which is in one of the positions 1,2, ..., ) into position ¢ by exchanging
it with the element that is in position ¢. Since the permutation we use to sort 7 is the inverse of
the permutation given in the right side of (1), the original permutation = equals []_, (p;,7) and
this construction is an injective mapping from S, to [1, 1] x[1,2] x...x[1, n]. Finally, cardinality
arguments show that this construction yields a bijection from S,, onto [1, 1]x[1,2]x...x[1,n]. O

For example, the decomposition of # = 4132 given by relation (1) is (1, 1)-(1,2)-(3,3)-(1,4).
If we relax the condition p; € [1,i], then the decomposition of a permutation as product of
transpositions is not necessarily unique, for instance the permutation 7 above can be written as
(4,1)-(4,2)-(3,3) - (4,4). For a permutation 7 € S, its decomposition given by (1) is called its
standard decomposition.

Recall that given a group G with a generating set U C G, the directed Cayley graph is
constructed as follows: the vertex set is (G and there is a directed edge from a to b if there



exists u € U with b = a - u. If the generating set is such that u € U implies that u=! € U,
then the Cayley graph is called undirected. See for example [10] for more details about Cayley
graphs. Actually, the decomposition in relation (1) gives the path from 12 ...n € S, to 7 in a
spanning tree of the undirected Cayley graph of the permutations group 5,, with generating set
{0, j) Yi<ecj<n- For n =4 such a tree is depicted in Figure 1.

2.2 Cycle representation

A cycle C' in a permutation 7 € S, is a sequence C' = (aga;...a;_1) such that 7(q;) =
A3i+1) mod ; for all 1, 0 <@ < j — 1. Obviously, the cycle (a;a;41...a;_1a0ay ...a;—1) is equiv-
alent to the cycle C' and we choose to represent cycles with their smallest element last. Any
permutation is the union of disjoint cycles and the cycle representation of a permutation is ob-
tained by imposing the condition that the cycles are written in increasing order of their smallest
element (that is, their last element); for example, the cycle representation of 4251763 € S
s (41)(2)(573)(6). It is worth mentioning that if 7’ is the permutation in S,, obtained from
7 € S, by erasing the parentheses in the cycle representation of 7, then = can be uniquely re-
covered from 7’ and the transformation = < 7’ is a bijection from S,, onto itself. This mapping
is essentially the transformation fondamentale of [9, Proposition 1.3.1], see also [17, p. 17].
The standard decomposition and cycle representation are intimately related. For = € 5,
with its standard decomposition given by relation (1) let j be a position such that p; = 7 for all
i > j. It follows that j is a fixed point of 7 and so the rightmost deranged point in 7 (that is,
the largest ¢ with m (i) # ¢) equals the largest ¢ with p; # ¢. This makes consistent the following
definition: For = € S5, D(7) = max{n (i) # ¢} = max{p; # i}, and by convention if 7 has no
K3 K3

deranged points (that is, 7 is the identity permutation), then D(x) = 1. We note that it might
happen that p; = ¢ but m; # ¢ when ¢ < D(w).
Lemma 2. Let 7 € 5, and j be a fized point for 7. For any { # j, 1 < { < n, we have

1. w-(l,j) is the permutation obtained from © by inserting j into the cycle containing (
between { and w({).

2. if ™ has k cycles, then w- ((,j) has k — 1 cycles.

Proof. 1. If £ is also a fixed point for = the statement is obvious; otherwise it results directly
from the form of 7 and 7 - ((, j) given below.

= (0 )

7 {l,j)= . .

(£;7) ( G wm () -

2. Multiplying 7 by (¢, 7) results in the merging of two cycles: the cycle containing ¢ and the
length-one cycle containing j. O

Observe that, with the notations above, the number of fixed points of 7 - (¢, j) equals those
of 7, minus two if £ is a fixed point of 7 or minus one otherwise.

We denote by S, , the set of permutations in S, with exactly & cycles and its cardinality is
the signless Stirling number of the first kind [17, p. 18]. The next corollary is a particular case
of the previous lemma.



Corollary 1. Let 7 be a permutation in S, j such that D(t) < n. For any j, D(t) < j < n,
and any , 1 < { < j, the permutation ® =7 -({,j) is in Sy k1.

The lemma below shows that each length-n permutation with k& cycles, other than the identity
one, can be obtained uniquely from a permutation with £+ 1 cycles by the above transformation
and it is the core of our generating algorithms.

Lemma 3. For each m € S, ., k # n, there exists a unique triplet (7,0, j) such that # = 7-((, j)
where:

o 7€ 5, k1 with D(1) < D(r),
o j> D(7),
o /< 7.

Proof. Firstly, since k # n, 7 is not the identity permutation, and so D(w) > 1. Let [ (p;, ?)
be the standard decomposition of 7, and define: j = D(x), £ = p; and 7 = [["_,(¢;,7) with
t; = p; for all ¢ except that ¢; = j. Then, 7 = 7 - ((,j) and the triplet (7, ¢, j) satisfies the
statement of the lemma and the uniqueness results from the unique standard decomposition
of 7. O

The generating tree induced by the recursive construction of S,, = U}_; 5, x, given by Lemma
3 for n = 4, is presented in Figure 1: 12 ... n is the root and if 7 € S, y4; is the parent of
T € Sy k, then the transposition (¢, j) which precedes 7 is such that # = 7 - ((, j).

2.3 Bell permutations

Definition 1. The set B, of length-n Bell permutations is the set of permutations in S,,, where
each cycle is a decreasing sequence of integers (assuming that cycles are represented with their
smallest element last).

B, is in bijection with the set of all partitions of [1,n]: each cycle in # € B, repre-
sents a block of the partition. For instance the partition corresponding to 4271365 € 57
is {4,1}{2}{7,5,3}{6}; thus, B, is counted by the nth Bell number (sequence 4000110 in [16]).
See also [12] for an alternative definition of Bell permutations in terms of pattern avoidance.

In the standard decomposition [[7(p;, i) of ® € S, we say that two transpositions (p,, u)
and (p,,v), u < v, meetif p, € {py,u} and meet at left if p, = p,. Although we do not use this
fact below, it is interesting to note that a short proof reveals that = is a Bell permutation iff
any two transpositions in the standard decomposition of 7 that meet must meet at left.

We say that ¢ is a tail of # € S, if ¢ is minimal in its cycle. In particular if # € B, then
7(¢) is the largest element of that cycle. We denote by Tail(7) the set of tails of 7 € S, and by
B, . the set of Bell permutations with & cycles, and B,, j is counted by the Stirling number of
the second kind [17, pp. 33]. Below are the ‘Bell” counterparts of Corollary 1 and Lemma 3.

Lemma 4. Let 7 be a permutation in B, ; and D(t) < n. For any j, D(1) < j < n, and any
¢ e Tail(r), 1 << j, the permutation 7 =7 - (€, j) is in By, ;1.

Proof. By Lemma 2, j is inserted after £ in the cycle containing ¢, and 7 has k — 1 cycles. [
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Figure 1: The tree induced by the recursive construction of Sy given by Lemma 3. It corresponds to
the generating tree induced for n = 4 by the call gen N(), gen P({1},2) and the call gen A({1},2)
with X = T'U{j}. Each permutation is preceded by the transposition which transforms its parent in
this permutation. The root, at level zero, i1s the identity permutation and at level d there are all the
permutations with 4 — d cycles.



(1,3 3124 (1,4) 4123
(1,2y 2134 (1,4) 4132
(3,4) 2143
(a,4) 4213
1oy 32147
(2,4) 3412
1234
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(2,4) 1423
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Figure 2: The tree induced by the recursive construction of By given by Lemma 5. Tt is the restriction
of the tree in Figure 1 to Bell permutations and corresponds to the generating tree induced by the call
of gen A({1},2), for n = 4 and with X = T.

Lemma 5. For each m € B, , k # n, there exists a unique triplet (1,0, j) such that # = 7-((, j)
where:

o 7€ B, py1 with D(1) < D(w),
o j> D(r),
o (€ Tail(r) and { < j.

In addition, Tail(x) = Tail(1) \ {j}.

Proof. As in the proof of Lemma 3, if [ (p;,¢) is the standard decomposition of w, then
j=D(m), { =p; and 7 =7 ({,j). It is easy to check that 7 € B, 141, D(7) < D(r) and
Tail(7) = Tail(7) \ {7}. The uniqueness is a consequence of Lemma 3. O

The generating tree induced by the recursive construction of B, = U}_, B, x, given by
Lemma 5 for n = 4, is presented in Figure 2.

2.4 Involutions

A permutation © € S,, is an involutionif w-7wis 123 ... n, the identity in .5,,; or equivalently, any
cycle in 7 has length at most two. We denote by I, (resp. I, 1) the set of length-n involutions
(resp. length-n involutions with k cycles); clearly & > [%L I, C B, and I, C B, . For
7 € S, we denote by Fix(n) the set of fixed points of 7 and so Fix(7) C Tail(x). Below are
the ‘involution’ counterparts of Corollary 1 and Lemma 3. Their proofs are similar to those of

Lemmata 4 and 5 and can be easily recovered by the reader.

Lemma 6. Let 7 € 1,1, and D(t) < n. For any j, D(1) < j < n, and { € Fix(r), 1 < { < j,
the permutation m =7 - ((,j) is in I, _1.
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Figure 3: The tree induced by the recursive construction of I4 given by Lemma 7. It is the restriction
of the tree in Figure 2 (and the one in Figure 1) to involutions and corresponds to the generating tree

induced by the call of gen A({1},2), for n =4 and with X =T\ {¢}.

Lemma 7. For each © € 1,1, k # n, there exists a unique triplet (7,0, j) such that 7 = 7-((, j)
where:

o 7€ I, 141 with D(1) < D(w),
o j> D(r),
o (€ Fix(r) and { < j.

In addition, Fix(r) = Fix(r) \ {{,j}.

The generating tree induced by the recursive construction of I, = UZ:[%]LM, given by

Lemma 7 for n = 4, is presented in Figure 3.

3 Generating algorithms

The next remark gives the interpretation of Lemmata 3, 5 and 7 in terms of generating trees
(or ECO operator), see for instance [1] and the references therein.

Remark 1. Let 7 € S, with D(7) <n and 1 < k < n.

o IfT €S,k then define S; ={7-((,j) | 7 > D(7),( < j}. By Lemma 3 it follows that the
Sfamily {ST}TGSW is a partition of Sy, p_1.

o IfT € B, then define B, = {r-((,j) | 7 > D(r),( € Tail(r),¢ < j}. By Lemma 5 it
follows that the family {BT}TEBW is a partition of B, ;1.

o IfT € Ik, then define I. = {7 -((,j) | j > D(7),l € Fix(r),{ < j}. By Lemma 7 it
follows that the family {IT}TGIW is a partition of I, y_1.

Alternatively, S; (resp. B-, 1;) is the set of successors of T in the generating tree induced by
Lemma 3 (resp. 5, 7); see Figure 1 (resp. 2, 3).

As an application of Lemma 3 and with the first point of the remark above we obtain the
naive algorithm, gen N in Figure 4 (a), for generating the set S,,; n and 7 are a global variables
and initially # = 12 ...n. If in a particular call the current permutation is 7, then it produces



Sr, and gen N is recursively called for each permutation in S,. Note that, after each recursive
call to gen N, the current permutation 7 is reset to its initial value before this call. See Figure 1
for the generating tree induced by the call gen N() with n = 4 and Table 1 for the list produced
by this call. Generally, gen N() produces S, by covering the generating tree in pre-order, that
is, visiting the root then visiting recursively the sub-trees.

This algorithm has two disadvantages: (i) to compute D(7) requires generally a linear time in
n, and (ii) as can be seen in the last two points of Remark 1, for some classes of permutations, ¢
does not cover an interval of integers. To eliminated these disadvantages we add to the generating
procedure two additional parameters: ¢ and T, where ¢ = D(7) + 1 and T is the set of allowed
values of ¢ for a given j. The procedure so obtained is gen P in Figure 4 (b). In this case the
main call becomes gen P({1},2) which corresponds to the initial permutation # =12 ... n and
gen P(T,q) produces several calls of gen P(T'U {q,q+ 1,...5},j + 1), one for each ¢, with
J € [g,n]. Note that after an iteration on j is completed, j is added to T". Also the call of this
procedure with ¢ = n + 1 simply prints the current permutation and does not produce recursive
calls.

This algorithm remains inefficient: sending a variable length set from a call to the next
recursive call requires linear time and space. A last improvement is obtained by implementing
the set T as a global variable represented by a linked list which is reset to its original value
at the end of each call. In all the following algorithms, including Gen P with the above final
improvement but excluding gen N, each call performs a constant number of operations on T
the addition of the largest element of T' (the statement 7' := T'U {j} or the call of gen P with
T U{j} as first parameter); the deletion of several of its largest elements (added iteratively by
the statement 7" := T'U{j} at the end of the procedure); or the deletion of a given element (not
necessarily the last one).

For the sake of conciseness, we choose to present all the algorithms with sets transmitted
as parameters and having in mind that always a global linked list representation is possible for
these sets and all the operations on this list are efficient; that is, done in constant time. Below
we will use the following ‘CAT principles’, which are slight modifications of those in [15], in
order to show that our algorithms produce classes of permutations in constant amortized time.

We call a recursive generating algorithm amortized-recursive if the total amount of com-
putation in each call is proportional to the number of direct calls produced by this call. In
other words, if in an algorithm each iteration of its loops (if any) produces a new recursive call,
then it is amortized-recursive. In this case the total amount of computation of the algorithm is
proportional to the total number of recursive calls, and we have:

Lemma 8. (First CAT principle) A recursive generating algorithm runs in constant amortized
time if it is amortized-recursive and each call (not only the terminal ones) produces a new object.

In a recursive procedure we define the degree of a particular call of the procedure to be the
number of ‘immediate’ calls that result.

Lemma 9. (Second CAT principle) A recursive generating algorithm runs in constant amortized
time if: (1) it is amortized-recursive, (2) each terminal call (degree-zero call) produces a new
object, and (3) the number of degree-one calls is in O(p), with p being the number of generated
objects (or equivalently, the number of terminal calls).

Proof. Let p be as in the statement of the lemma and denote by r the number of degree-
one calls. If r = 0, then p > thenumber of recursive calls ,q the statement holds. Otherwise,

2
(the number of recursive calls)—r

p> 5 and when r € O(p), again the statement holds. O




procedure gen N() procedure gen P(7T,q)

local j,(; lo?al 56
. print(w);
print(m); for j:=¢q to n do
for j:=D(r)+1 to n do J =4
. for (€T do
for /:=1 to j—1 do .
rem (043 T e
| e gen P(T'U{j},j+1);
gen N(); -
rem (043 ri=me )
end do‘ e end do
end do r=Tud{j;
end do

end procedure.
P end procedure.

(a) (b)

Figure 4: (a) Algorithm producing the set S,,, and (b) its version where ¢ = D(r) + 1 and the set
T =[1,j — 1] are parameters of the procedure. The call gen P({1},2) produces S, and in both cases n
and 7 are global variables with 7 initialized by 12 ... n.

If in gen P we replace the first parameter of its recursive call by a generic parameter X,
then we obtain the algorithm gen_A in Figure 5 (a), and for X = T'U{j} we retrieve gen_P. The
next theorem says that, according to different instances of X, gen_A generates the sets S, B,
and I,.

Theorem 1. The algorithm gen_A produces in constant amortized time:

1. Unrestricted permutations if X =T U{j};
2. Bell permutations if X =T;

3. Involutions if X =T\ {(}.

Proof. (1) As mentioned above, when X = T'U {j}, gen P and gen_A coincide, and when the
transposition (¢, 7) is applied, then T'=[1,j — 1] and £ € T..
(2) If X =T, when the transposition (¢, j) is applied to the current permutation, then £ € T' =
[1,7 — 1] N Tail(7) and by Lemma 5, gen_A produces Bell permutations.
(3) If X = T\ {}, when the transposition (,j) is applied to the current permutation, then
teT =][1,7—1]NFix(n) and, by Lemma 7, gen_A produces involutions.

In any case, gen_A satisfies the first CAT principle, disregarding the operations on the set T.
Finally, the implementation of 7' (as mentioned before Lemma 8) by a global variable represented
by a linked list yields CAT algorithms. U

See Figures 1, 2 and 3 for the generating trees induced by the calls of gen A({1},2) with
n = 4 and corresponding to different instances of X. In Table 1 are the lists produced by these
calls.

Permutations with a given number of cycles

The level of a particular call of a recursive algorithm is defined as follows: the main call has the
level zero, and a recursive call at level d produces ‘immediate’ calls at level d+ 1. By the second



procedure gen K(7,q,d)

procedure gen A(T,q) local j3,/;
local j3,/; if d=n-—-Fk
print(w); then print(w);
for j:=¢q to n do else for j:=¢q to k+d+1 do
for (€T do for (€T do
mi=x-(j); mi=nx-(j);
gen A(X ,j+1); gen K(X,j+1,d4+1);
mi=x-(j); mi=nx-(j);
end do end do
T:=TU{j}; T:=TU{j};
end do end do
end procedure. end if

end procedure.
() (b)

Figure 5: (a) The generalization of gen P; it produces the sets S,, B, and I, according to different
instances of X: S, (for X = TU{j}), B, (for X =T), I, (for X = T\ {{}). (b) Algorithm producing
Snk, Bnk (k# 1) and I,  according to whether X = T U {j}, X =T, X =T \ {{}, respectively. d is
the level of the call and k, the number of cycles, is a global variable.

point of Lemma 2, the permutations printed by gen_A at level d have n — d cycles, and if we
impose the condition that permutations are printed only at level d = n — &, then the sets .S, 1,
B, and I, ) are obtained. However, not every permutation at level less than n — & produces
eventually a permutation at level n — k, and thus with & cycles. To ensure that the level n — &
is reached it is enough to impose the condition that j < k+ d + 1 on each call at level d. The
algorithm thus obtained is gen K in Figure 5 (b). The main call is gen X({1},2,0), d is the
level of the call and k, the number of cycles, is a global variable. The next theorem shows that
gen K is efficient.

Theorem 2. The algorithm gen K produces in constant amortized time:

1. Permutations with k cycles (counted by the signless Stirling number of the first kind) if
X =TU{j);

2. Bell permutations with k cycles, k # 1, (counted by the Stirling number of the second kind)
if X =1T;

3. Involutions with k cycles, k > [5], (and so with n — 2k fized points) if X =T\ {{}. In

particular, gen K produces fized-point-free involutions when 2k = n.

Proof. (1) If k # 1, then each call of gen K has degree at least two; and when k& = 1 there
is a single call of degree one, namely the call at level zero (the main call) which produces the
permutation 213 ... n. We refer the reader to Figure 1 where the permutations with &k cycles
are at level 4 — k.

(2) Suppose that k£ # 1 and that 7 is a Bell permutations obtained at level d < n — k. It is easy
to check that Tail(7) N [1, k 4 d] has at least two elements and so 7 has at least two successors.
We refer the reader to Figure 2 where the Bell permutations with k cycles are at level 4 — k.

10



[ Si [ B [1][ S [Ba] ][ S [Bi]T]

1234 | v | v || 2413 3241

2134 | v | v |] 2341 1324 | v | V
3124 | v 4132 | v 4321 | v | V
4123 | v 2431 1423 | v
3421 2143 | v | v || 1342

3142 3214 | v | v || 4231 | vV |V
2314 4213 | v 1432 | v | V
4312 312 | v | v || 1243 | vV | V

Table 1: The lists for the sets Sy, By and Iy (read from top to bottom and from left to right). They
are generated by the call gen A({1},2) for n = 4 and with X = TU{j}, X = T and X = T\ {{},
respectively, and are obtained by covering in pre-order the generating trees in Figures 1, 2 and 3.

(3) Suppose that k > [5] and that 7 is an involution at level d < n — k. In this case k —d > 1.
Indeed, d < n — k combined with n < 2k implies that d < k; so k — d > 1. It is easy to check
that & — d = 1 occurs only when n is even and k=d+1 = %

On the other hand, © has n — d cycles and thus at least n — 2d fixed points, and n — k — d
of them are k +d+ 1,k +d+2,...,n. Thus, the number of ¢ € Fix(r), { < j=k+d+1,is
at least (n —2d) — (n —k —d) =k —d > 1, and each call has degree at least two, except for n
even, k = 5 and d = 5 — 1, which corresponds to the involutions on the last but one level in
the generating tree for even n and k = 5. We refer the reader to Figure 3 where the involutions
with k cycles are at level 4 — k.

Neglecting the operations on the set 7', in each of the three cases gen X satisfies the second
CAT principle. As above, the implementation of T by a linked list yields CAT algorithms.

O
Note that gen K does not generate efficiently the singleton set B, ; ={n12...(n—1)}.

Corollary 2. If the algorithm gen X prints permutations at each level d < n — k (not only at
level d = n — k), then it produces the same three classes of permutations but with at least k
cycles.

In a permutation © € 5, a couple (¢, j) is an inversion if ¢ < j but 7 () > 7 (). A permutation
is called even (resp. odd) if it has an even (resp. odd) number of inversions. The set of even
permutations forms a subgroup of S,, denoted by A,, called the alternating group, and its

n!

cardinality is 5.

Corollary 3. If n is even, then the permutations produced by gen_A at even levels are even and
at odd levels are odd. Conversely, if n is odd, then the permutations produced at even level are
odd and those produced at odd level are even.

Proof. The permutation = € S,, is even iff the number of even-length cycles in 7 is even; see [5,
pp. 77].

11



Permutations with a given number of fixed points

Before the first call to gen_P, the initial permutation is 12 ... n and it has the maximal number
of fixed points, and as mentioned after Lemma 2, the number of fixed points of 7 - (¢, 7) in
gen P decreases by two or by one, according to whether £ is a fixed point of 7 or not. If we
impose on gen P the condition that only length-n permutations with f fixed points are printed
(f€40,1,...,n—2,n}), then the resulting algorithm is inefficient: not every permutation with
more than f fixed points eventually produces a permutation with f fixed points. Note that
permutations with f fixed points, f < n, are obtained at each level d > 1, with n —2d < f <
n—d-—1.

Here we show how to modify the algorithm gen P in order to obtain a CAT generating
algorithm for permutations with exactly f fixed points. The algorithm thus obtained is gen_F in
Figure 6 and as in procedure gen K we introduce a third parameter, e. If 7 is the permutation
corresponding to a given call of gen F(7',q,¢e), then ¢ and T have the same meaning as in gen_P
and the number of fixed point of 7 is f 4 e (e is the fixed points ‘excess’); so permutation are
printed when e = 0 and the main call, corresponding to 12 ...n is gen F({1},2,n— f). In
particular, when f = 0 the algorithm produces derangements. The upper bound n — [§]4 1 in
the loop on j ensures that the current call eventually makes calls with e = 0 and thus produces
permutations with f fixed points, and when j = n — [§]| 4 1, then £ must be a fixed point of
the current permutation. By simple calculation, it can be shown that each call to gen F has
degree at least two, except possibly at most p of them, with p being the number of generated
permutations. By a careful linked list implementation of the involved sets, the algorithm thus
obtained runs in constant average time. This is formally stated in Theorem 3; see also Figure 7.

Theorem 3. The algorithm genF produces in constant amortized time permutations with a
given number of fized points.

Combining this result with the previous cases (Bell permutations and/or permutations with
a given number of cycles) we obtain:

Corollary 4.

e [f gen F prints permutations at a given level d (resp. at each level < d), with d > 1 and
n—2d < f<n-—d-—1, then it produces permutations with [ fixed point and with n — d
cycles (resp. with at least n — d cycles).

e Changing the first parameter of genF in its inner call from T U {j} to T the obtained
algorithm produces Bell permutations with a given number fixed points. In this case if
gen F prints permutations at a given level d (resp. at each level < d), with d > 1 and
n—2d< f<n-—d-1, then it produces Bell permutations with f fixed point and with
n —d cycles (resp. with at least n — d cycles).

4 Final remarks

The generating algorithms presented in this paper can easily be modified in order to produce
other classes of permutations: permutations with at least a given number of fixed points or
Bell permutations with a bounded cycle lengths. Can the techniques presented here be applied
to generate other classes of objects? Also, our algorithms produce permutations by covering
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procedure gen F(7T,q,e)
local j,0,a,U;
if e =0 then print(m);
else for j:=¢ to n—[5]+1 do
if j=n-|5
then U :=1T NFix(7);
else if e=1
then U : =1\ Fix(7);
else U :=T;
endif
endif
for £ €U do
if (€ Fix(r)
then a :=¢ — 2;
else a:=e —1;

endif
mi=m-(l,]);
gen(TU{j},j+1,a);
mi=m-(l,]);

end do

T:=TU{j};

end do
end procedure.

Figure 6: Algorithm producing the length-n permutations with f fixed points. The main call is
gen F({1},2,n— f), n and & are global variables and initially 7 = 12 ... n.

a generating tree and every two consecutive permutations on a branch of this tree differ by a
transposition. Does an order exist to cover the whole tree so that two consecutive permutations
differ by a transposition, that is, permutations are listed in Gray code?

Acknowledgment. Special thanks are due to an anonymous referee for a very careful reading
of a not so careful manuscript.
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