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Abstract

We give a minimal change list for the set of order p length-n Lucas strings, i.e., the set of length-
n binary strings with no p consecutive 1’s nor a 1° prefix and a 1™ suffix with £ + m > p. The
construction of this list proves also that the order p n-dimensional Lucas cube has a Hamiltonian
path if and only if n is not a multiple of p + 1, and its second power always has a Hamiltonian path.
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1 Introduction

The Hamming distance between two strings in {0, 1}" is the number of positions in which they differ. A
k-Gray code for a set of binary strings B C {0, 1}" is an ordered list B for B, such that the Hamming
distance d between any two consecutive strings in B is at most k. In addition, if the list B minimizes
both k = max d(z,2') and > d(z, z'), where (z,z') ranges over all pairs of successive strings in B, then
it is called minimal change list or minimal Gray code. Obviously, a 1-Gray code is a minimal change list.

We call Hamiltonian a graph having a Hamiltonian path and a k-Gray code is a Hamiltonian path in
QF|B, the restriction of the kth power of the hypercube @, to the set B.

The set F, p, of order p length-n Fibonacci strings, is the set of length-n binary strings such that
there are no p consecutive 1’s. The set L, p, of order p length-n Lucas strings, is the set of all strings in
Fy, p which do not begin by 1¢ and end by 1™ with £+ m > p. In other words, Ly, p is the set of length-n
binary strings such that there are no 17 factors if strings are regarded circularly, i.e., the last entry of a
string is followed by the first one.

A number of papers concerning the Fibonacci and Lucas strings have been published [3, 6, 7, 8, 9, 13,
15]. In the present one we introduce an order relation on {0, 1} which induces a minimal change list on
Ly ». Note that this order relation yields a 1-Gray code on the set F, ,, of order p length-n Fibonacci
strings [13].

This paper is the extended version of [2] and the remaining is organized as follows. In the next section
we prove that a 1-Gray code for L, , is possible only if (p+1) does not divide n. In Section 3 we give such
a Gray code and a 2-Gray code when (p+ 1) divides n; both of them are minimal change lists. Few graph
theoretic consequences are presented in Section 4 and in the final part some algorithmic considerations
are given.

2 Parity difference relation

For a binary string set B we denote by B’ (resp. B") the subset of B of strings with an odd (resp.
even) number of 1’s. Let (L, ,) be the order p n-dimensional Lucas cube, i.e., the restriction of the

hypercube @, to the set L,, ,. The graph @Q(Ly ;) is bipartite, and with the notations above {L;, ,, Ly, ,}



is a bipartition. No Hamiltonian path is possible in Q(L, ) (or equivalently, 1-Gray code for L, ,) if
|card(Ly, ,) — card(Ly, )| > 1, i.e., the number of vertices in the two bipartitions differs by more than
one.

The main result of this section is Theorem 1. In the following we suppose p > 1 fixed and more often
in this section we will omit the subscript p for the sets F, ,, L, p, and other related things.

Let {¢n}n>0 and {A,}n>0 be the parity difference integer sequences corresponding to Fibonacci and
Lucas strings defined by

o ¢, = card(F}) — card(F}), and
o X\, = card(L]) — card(Ll).
Lemma 1 1. ¢, satisfies

¢n:¢n—1_¢n—2+"'+(_1)p+1¢n—pa fOT’an—|—1, (1)

2. A\, 1s related to ¢, by

M =¢n_2—2 ¢n_3+ -+ (=1 p.-¢,_,_1, forn>p+2. (2)
Proof 1. The recursive definition in [13]
Fo=0-F,_1U10-F_oU110- Fy_zU... U170 F,_, forn>p+1

can be expanded as
F/'=0-F _JUl0-F/ ,ul10-F,_sU...,

and
F!'=0-F/ ,U10-F,_,Ul110-F/ ;uU...,

and (1) holds.
2. When n > p + 2 the set Ly, is the union of the sets in the table below, where the strings with prefix
1*=10 are in the ith line and those with the suffix 017~ are in the jth column, 1 < i,j < p.

0-Fn_s-0, 0-Fh_s-01, cor 0 Fpuop 01772 0-Fy_py-0177"
10 - Fy—3 - 0, 10 - Fpy—p—q - 01, <o 10 Fy_p—y - 01772

17720 Fy_p -0, 17720 Fypp—q - 01

17710 Fyep1 - 0

In this decomposition, each F, _g_1 occurs exactly k times, and reading this table diagonally one has
P
card(Ly,) = Z] ccard(Fn_j_1),
j=1

and F,,_p_1 appears as 1°0 - Fj,_p_1 - 01%, with s +¢ =k — 1, thus
card(L}) = card(F),_,) + 2 - card(F)_3) + 3 - card(F}_,) ...,

and
card(L))) = card(F)_,) + 2 - card(F) _3) + 3 - card(FY_,) . ..,
so (2) holds. O

The next proposition gives the generating function for the sequences {¢,},>0 (except its first term)
and {A, }n>0 (except its p + 2 first terms).



Proposition 1 If ¢(z) and A(z) denote the generating functions for the sequences {¢y }n>0 and {\, }n>o
respectively then

1.
o) = e+ (-7 ®)
2. .
_p 1 » 42 o1 1—(p+1)(—2)P + p(—2)P+!
A(Z)_;A]Z A (1= (=z)p*t)y-(1+2) (4)

Proof 1. Fori = 1,2,...,p— 1 all strings in {0, 1}’ are in F;, and half of them are in F! and other half

are in F}', so ¢1 = ¢2 = ... = ¢p_1 = 0. If i = p then, a single string in {0, 1}? does not belong to F,,
namely 17, so ¢, = (—1)?*!. By the relation (1) we have

flz
o(z) =do+z2 T g_(z ))p+1
142
where f(z) = (—z)P~! is given by the values of ¢1, ¢2,...,¢,. See for instance page 79 of Flajolet’s and
Sedgewick’s seminal book [4].
2. If A*(2) = A(z) — Z?ié Ajz7, then the relation (2) gives (see again [4])

A (2) = (8(2) — do) - (22 = 22° + -+ + (=1)PFpzPth)

and finally
1 - (]9 + 1)(_Z)p + p(_z)p-}-l (5)
(1= (=2)ptt)-(1+2)
O
For n > p+ 2, A, is given by the coefficient of z” in (4). The next corollary shows that the sequence
{An}n>o0 is periodic from n > p+ 1 and gives its generating function if it is extended by periodicity to
Aoy ALy Apgts

N (z) = 2P12 . (—1)PHL .

Corollary 1 The sequence {A, }n>p42 has the period 2(p+1). In addition, if one defines Ay = Ay yo(p1)
forallmn=0,1,...,p+ 1 then its generating function becomes

(=2)Pt + (p+ Dz +p
T () (L 2) (©)

Proof. For A*(z) given by relation (5) it is easy to show that 2:,&22) (1 — 22(P*1)) is a polynomial of degree

Az) =

less than 2p + 2. Thus );;fz) is the generating function for a periodic integer sequence with the period
2(p+ 1), and so is A(z) assuming it is extended by periodicity.
For (6) it is enough to find a polynomial g(z) of degree less than p+2 such that A\*(z) —g(z) is divisible

by 22(P*+1) and in this case A(z2) = A2)=9() 14 ig not hard to check that 9(z) = EP U1 atigfies

. . 22(p+1) z+1
this and we obtain (6). O

Corollary 2 The parity difference integer sequence corresponding to Lucas strings satisfies

Ui (L)
A”’P‘{ (—1)" p if (p+1)n. (7)

Proof. A(z) in the relation (6) can be expressed as

p+1 1
1= (=2z)p+l 142

(p+1)- Y (=2)F 0D =3 (=)

E>0 n>0

A(z)



and A, p is the coefficient of 2" in A(z). m|

Observe that the choice of A;,, i =1,2,...,p+ 1, in Corollary 1 seems arbitrary since extended by
periodicity. In fact, for i = 1,2,...,p all the 2! strings in {0, 1} are in L; p, except 1* which contains
p consecutive 1’s if strings are regarded circularly. In this case A; , = (=1)**1, and similarly, Apip =
(=1)P*1p, which are in accord with (7).

Theorem 1 If Q(L, ) is Hamiltonian then (p + 1) [n.

Proof. If Q(Ly, p) is Hamiltonian then |A, | < 1so (p+ 1) fn. a

The Hamiltonism of Q(L, ,), when (p + 1) fn, is shown constructively in the next section.

3 The Gray codes

We adopt the convention that lower case bold letters represent length-n binary strings, e.g., ® =
Z1xs...¢,; and we use the same group of letters to denote a set A and an ordered list A for a set
A. A list A for the set A C {0,1}" is equivalent to an order relation on A: @ < y iff ® precedes y in A.
For example, if & # y € {0,1}" and i is the leftmost position with z; # y; then:

e the lexicographic order is given by: @ < y iff #; is even (= 0), and y; is odd (= 1),

o the reflected Gray code order due to Frank Gray in 1953 [5] is given by: @ < y iff 2321 x; is even
(and Zj»:l y; is odd).

We say that an order relation < on a set of strings induces a k-Gray code if the set listed in < order
yields a k-Gray code, i.e., successive strings differ in at most k positions. So, the reflected Gray code
order above induces a 1-Gray code on {0,1}"; and its restriction to the strings with fixed density (i.e.,
strings in {0, 1}” with a constant number of 1’s) induces a 2-Gray code, called revolving door code by
Nijenhuis and Wilf [10].

According to [13] we recall the following definition which gives another order relation on binary strings
and all of those presented here are particular cases of genlex order [14], that is, any set of strings listed
in such an order has the property that strings with a common prefix are contiguous.

Definition 1 We say that x is less than y in local reflected order, denoted by ® < y, if Z;Il(l — ;)
is odd and Z;zl(l — y;) is even, where i is the leftmost position with x; # y;.

Remark 1
1. ® <y iff the prefix x1x4 ... 2; contains an odd number of 0’s,
2. ® <y iff ® >y in reflected Gray code order, with ® and y the bitwise complement of ® and y,

3. As the reflected Gray code order, the local reflected order < induces a 1-Gray code on {0,1}" and
a 2-Gray code on length-n binary strings with fived density,

4. In [13] it is shown that, unlike the reflected Gray code order, the local reflected order < induces a
1-Gray code on the set I, ,.

The main result of this section is Corollary 3 and Theorem 2 which say that < induces also a minimal
Gray on the set L, ,, of order p length-n Lucas strings.

If z is a length-k string, we denote by z*% the length-n prefix of the infinite string zzz . .., or equiva-
lently,
2k =zz.. .2z,
==
L]



where = n mod k, and z, is the length-r prefix of z. In the following, the length-(p + 1) binary string
x=1...100

p—1
plays a central role for our purposes.
Let F,, and £, , be the lists obtained by ordering the sets F, , and L, ,, respectively, by the
relation <. In [13] it is proved that the first and the last strings of F, , are first(F,,) = OXZT_ll and
last(Fn p) = x#. The next lemma gives similar results for £,, ,.

Lemma 2
1. first(L,,) = 0x >0
2. last(Lnp) = XZT_llO.

Proof 1. Let fifo...fn = OXZT_ll and 1 < j < n such that Zgzl(l — fi) is even, then: (1) j > 0 and
fi =0, and (2) f;_1 is the rightmost 1 bit in a contiguous 1’s sequence of length p — 1 and, by Definition
1, OXZT_ll has no predecessor in L, , in < order. The proof of 2. is similar, the string XZT_llo has no

successor in Ly, p. O

Now we describe how we compute the successor of a string in the lists 7, , and £, ,. Since in the lists
Fnp and L, p strings with a common prefix are contiguous, the successor of @ € F, , (resp. of & € L, p)
is given by changing the rightmost bit in @ such that the obtained string remains in F, , (resp. in L, p),
and it 1s greater than @ in < order. More formally we have

Lemma 3 Let x # last(F, p) and s(x) its successor in F, ,, then either 1, 2 or 3 below holds.

1. ® contains an odd number of 0’s and it has not a suffizx of the form 1P=10. In this case s(x) =
z1 ... n_1(l—xy,).

2. x contains an even number of 0’s and ends by 17~10. Then s(e) =x1...2q-20z,.

3. ® contains an even number of 0’s and does not end by 17710, or it contains an odd number of
0’s and ends by 1P~10. Let z1x5...x,_1x be the length minimal prefiz of ® with an odd number

of 0’s and such that ® = zizs.. .rk_lkaXn;iII (with Xn;il_l eventually empty). In this case
n—k—1
s(e) = zao. . xp—1(1 — 2g)0x P41 .

Note that if @ is like described in point 3 of Lemma 3 then the required prefix zx5 ... x5_12; always
exists. For example, in Fg 3 we have: by point 1, s(010011) = 010010; by point 2, s(000110) = 000100;
and by point 3, $(100100) = 100110 and s(100110) = 110110. In [13] a similar idea is used to compute,
in constant time, the successor s(x) of a Fibonacci string .

Obviously, if ® is a Lucas string then s(x) is a Fibonacci string but not necessarily a Lucas string

too. The next proposition states that if we denote by succ(z) the successor of ® € L, , in the list £, ,
then suce(z) is either s(z), s?(x) = s(s(x)) or s3(x) = s(s(s(z))).

Proposition 2 Let @ € L, ,, ® # last(L, ) and s(x) & L, , then either 1 or 2 below holds.

1. (p+1)n and ® = 1k00Xn;i1_2 with 0 < k < p—1. In this case

k—3

succ(x) = 1k+10Xn;+1 0

= 32(:13).

2. & =1%21°0 with0 < k,{ <p—1and k+£>p— 1. In this case

succ(x) = 1ks(z)1£0

= SS(w).



Table 1: The lists £4 2 and £4 3. Changed bits are in bold-face.

Lap La43
0100(0110
0101|0100
00010101
0000|0001
0010|0000
101010010
1000|0011
1010
1000
1001
1100

Proof. When s(@) is not a Lucas string then it is obtained from @ by changing the 0 bit which either
follows a 1’s prefix or is in the last position. a

Remark 2

1. If (p+ 1)|n then there exist exactly p— 1 Lucas strings as in point 1 of Proposition 2, one for each
k, 0 <k < p—1. In addition, if ® s such a string and d denotes the Hamming distance then

(a)
d(x,suce(x)) = d(=,s*(x))
= 2

bl

(b) the string v = 1¥00x 0 € Ly p is the predecessor of ® in < order (i.e., succ(v) = x) and
d(v, suce(x)) = 1. (In fact v = @ - succ(x), the bitwise product of ® and succ(x).)

2. If ® 1s a Lucas string as in point 2 of Proposition 2 then
d(x, suce(x)) = d(1%21%0,1%2'1%0)
= d(z,z2)
= 1.
This remark proves the following

Corollary 3
1. If (p+1) fn then L, , is a 1-Gray code for L, ,.

2. If (p+1)|n then L, , is a 2-Gray code for L,, , and there are exactly p—1 strings with d(x, succ(e)) =
2.

Theorem 2 L, , is a minimal change list for the set L, p.

Proof. By Corollary 2, there are no more restrictive Gray code as £, p. a

See Table 1 and Figure 1.(b) for the list £4 5 and L4 3.

4 Graph theoretic issues

Here we present some graph theoretic consequences of the previous results.



4.1 Hamiltonicity

For a graph G let G* be its kth power, where edges connect vertices which are linked by a path in G of
length at most k. A k-Gray code for B C {0,1}" is a Hamiltonian path for Q¥|B, the restriction of the
kth power of the hypercube to the set B. Generally, (Q, |B)k is a subgraph of Q*|B and equality holds if
Hamming distance and shortest path length coincide on @,|B; this is the case for B = F, , or Ly, p,, but
not for Dyck words for instance, since the restriction of @, to length-n Dyck words is not a connected
graph.

As in Section 2, let Q(Ln,p) = @Qn|Lnp denote the Lucas cube. Corollary 3 says that £, , is a
Hamiltonian path in:

e the Lucas cube iff (p + 1) /[n,

o the second power of the Lucas cube elsewhere. (In general, (L, ) is not 2-connected as it may be
checked for Lz, and so, the Hamiltonicity of its second power can not be obtained trivially from
a well-known result in graph theory.)

Corollary 4 If (p+ 1)|n then

1. The minimal number of paths covering Q(Ly p) is p.
2. The length of the mazrimal path in Q(Ly ) is card(L, ,) — p+ 1.

Proof. The point 1 follows from Corollary 3. For the point 2, from Remark 2 results that by bypassing
in £, , the p— 1 strings y = succ(x), with d(z,y) = 2, we obtain a maximal length path in Q(L, ,). O

When a graph does not have a Hamiltonian path it may be desirable to visit each vertex but not
necessarily once, such that the Hamming distance between two successive vertices is one. Following [12],
a graph is in the class H(s,t) if it has a path that visits every vertex at least s times and at most ¢ times,
and such a path is called #(s,t)-path. Thus a graph is in #(1, 1) exactly if it is Hamiltonian. In this
context, we have

Corollary 5 If (p+ 1)|n then Q(Ln p) is in H(1,2).

Proof. When (p + 1)|n, by point 1(a) of Remark 2, in the list £, , there are strings @ which differ
from succ(®) in two positions. For each such string, we insert v—the predecessor of #, see point 1(b) of
Remark 2,— between x and succ(x) and one obtains an H(1,2) path in Q(L, ;).

O

Notice that in the (1, 2) paths above exactly p — 1 strings are visited twice, and this is optimal. See
Figure 1.(c) for an #(1,2) path in Q(L43).

Figure 1: (a) The Hamiltonian path Fis in Q(Fis). (b) The ‘path’ L43 in Q(Las), dashed arcs connect
distance-2 vertices. (c¢) An H(1,2)-path in Q(L43).

0110@ 01109 01109
0101 1100 1101 0101 1100
0100 0100- 0100.
| ]
0011 1010 1011 A 0011
0010 . 0010, 1010
\ <
0000 0000 3 0000
000 1000 1001 1001 0001 1000 1001




4.2 Some structural properties

Let now recall some definitions concerning a connected graph G with vertices set V:

o the eccentricity of a vertex v is e(v) = max d(u,v),
ue

o the diameter of G is diam(G) = max, d(u,v) = max e(v),

o the radius of G is rad(G) = mi‘l;l e(v),
ve

e and the center of G is Z(G) = {u € G | e(u) = rad(G)}.
The next proposition generalizes similar results presented in [9] for Ly, ».

Proposition 3 Letn > 1, p > 2.

1 diam(Q(Lnyp)):{ n—1 ifp=2 andn odd,

n otherwise,
2 e(0)=n—[2]
3. rad(Q(Lnp)) = n—[5] and Z(Q(Lnp)) = {07}

Proof 1. Let @ = 1010... (#; = 1 iff i is odd) and y = 0101 ... (y; = 1 iff ¢ is even). If p = 2 and n is
even or if p > 2 then @,y € L, , and they are at maximal distance equal to n. If p = 2 and n is odd
there does not exist a pair of strings in L, , at distance n and it is easy to find two strings at distance
n— 1.
2. Let v = 17710 ...177101%0 with 0 < k < p—1. Clearly, v € L, p and it has a minimum number of 0’s,
namely [%], or equivalently, a maximal number of 1’s, equal to n — [%], So, e(0™) = d(0™,v) = n — [%]
The same result can be obtained by replacing v by any of its circular shifts.
3. For any Lucas string u # 0" we construct another Lucas string at distance greater than n — [%] to
u. The bitwise product v - & of a Lucas string v by a binary (not necessarily Lucas) string @ is a Lucas
string and d(x,v - &) equals the number of positions ¢ where v; = 0 and z; = 1.

Let w € L,,, w # 0°, @ its bitwise complement and v a circular permutation of the string
1P=10...17=101%0 given in point 2, such that @ and v have at least one 0 in the same position. v-@ € Ly
and since v has exactly [%] 0’s and at least one of them corresponds to a 0 in @ one has d(w, v @) < [2].

P
By the triangle inequality

and so,

O
A stable set of a graph is a subset of vertices such that there are not two adjacent vertices and the
stability number, denoted by a(G), is the number of vertices in a stable set of maximum cardinality.

Proposition 4 o(Q(L, p)) = max (card(L:lyp), card(Lx7p)) where {Ly, ,, Ly, ,} is the bipartition of Ly .

Proof. Let A be the set of maximum cardinality between L;W and L%,p; and B the other set. Clearly, A
is stable and we will prove that any stable set has at most the same cardinality as A. By Corollaries 2
and 3, the successor succ(x) of @ in the list £, ,, induces an injective function suce : B — A; in addition,
x € B and succ(x) € A are connected in (L, p). Thus, if a stable set contains @ € B then it must not
contain suce(x) € A, and so the cardinality of a stable set does not excede that of A. a



5 Algorithmic considerations

In [13] is given an exhaustive generating algorithm for the list F, , which runs with constant delay
between any two successive strings. Now we show how one can modify this algorithm in order to produce
efficiently the list £,, ;.

Proposition 2 guarantees that at most two Fibonacci strings exist between any two consecutive Lucas
string in £, »; and by point 2 of Lemma 2 the last string in £,, , is followed by at most one Fibonacci string.
So, the algorithm in [13] can be modified to generate the list £, , by simply bypassing the Fibonacci
strings which are not Lucas strings. The obtained algorithm inherits the constant delay property if one
can decide, in constant time, if the current generated Fibonacci string is also a Lucas string. Additional
variables, as: (1) the length of the contiguous prefix of 1’s and (2) the length and the first position of the
rightmost contiguous sequence of 1’s, can be used to distinguish in constant time Fibonacci from Lucas
strings.
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