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Abstract. We present a simple greedy algorithm for generating Gray codes for
Dyck words and fixed-weight Dyck prefixes. Successive strings in our listings
differ from each other by a transposition, that is, two bit changes. Our Gray codes
are both homogeneous and suffix partitioned. Furthermore, we use our greedy
algorithm to produce the first known homogeneous 2-Gray code for ballot se-
quences, which are Dyck prefixes of all weights. Our work extends a previous
result on combinations by Williams [Conference proceedings: Workshop on Al-
gorithms and Data Structures (WADS), LNTCS 8037:525-536, 2013].

Keywords: Dyck word · lattice path · balanced parentheses · ballot sequence · homo-
geneous Gray code · greedy algorithm.

1 Introduction

A Dyck word is a binary string with the same number of 1s and 0s such that any prefix
contains at least as many 0s as 1s. Dyck words are in bijection with balanced paren-
theses, with an open bracket represented by a 0 and a close bracket represented by a
1 [4,7]. For example, all length six balanced parentheses are given by

((())), (()()), (())(), ()(()), ()()().

The Dyck words that correspond to the five balanced parentheses of length six are

000111, 001011, 001101, 010011, 010101.

Since the number of 0s and 1s of a Dyck word has to be the same, the length n of Dyck
words has to be an even number. Dyck words can be used to encode lattice paths that
end on their starting level and never pass below it.

A ballot sequence is a binary string of length n such that in any of its prefixes the
number of 0s is greater than or equal to the number of 1s. As an example, the ten ballot
sequences for length five are

00000, 00001, 00010, 00011, 01001, 00100, 00101, 00110, 01000, 01010.



Such a length n sequence encodes a ballot counting scenario involving two candidates
in which the number of votes collected by the first candidate is always greater than or
equal to those collected by the second candidate throughout the count. Ballot sequences
are also known as Dyck prefixes, which are prefixes of Dyck words. Ballot sequences
and Dyck prefixes can also be used to encode lattice paths that end on the positive region
and never pass below it.

The number of Dyck words is known as the Catalan number, and the number of ballot
sequences is known as the ballot number. The enumeration sequences of Dyck words
and ballot sequences are A000108 and A001405 in the Online Encyclopedia of Integer
Sequences respectively [23]. The enumeration formulae for the number of Dyck words
and the number of ballot sequences [2] of length n are given as follows:

– Catalan number:
1

n
2 + 1

(
n
n
2

)
;

– Ballot number:
(

n

⌊n
2 ⌋

)
.

Dyck words and ballot sequences are well studied combinatorial objects that have a
wide variety of applications. For example, Dyck words have been used to encode a
wide variety of combinatorial objects including binary trees, balanced parentheses, lat-
tice paths, and stack-sortable permutations [4,7,8,11,14,19,27,31]. Ballot sequences, on
the other hand, have many applications ranging from constructing more sums than dif-
ferences (MSTD) sets [33], generating n-node binary trees of different shapes [1,16],
and enumerating random walks with various constraints [3,6,10,12,29]. For more ap-
plications of Dyck words and ballot sequences, see [9,13,20,24].

One of the most important aspects of combinatorial generation is to list the instances
of a combinatorial object so that consecutive instances differ by a specified closeness
condition involving a constant amount of change. Lists of this type are called Gray
codes. This terminology is due to the eponymous binary reflected Gray code (BRGC)
by Frank Gray, which orders the 2n binary strings of length n so that consecutive strings
differ in one bit. For example, when n = 4 the order is

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,
0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

The BRGC listing is a 1-Gray code in which consecutive strings differ by one symbol
change. In this paper, we are focusing on transposition Gray code, where consecutive
strings differ by swapping the positions of two bits. A transposition Gray code is also a
2-Gray code, where consecutive strings differ by at most two bit changes.

Several algorithms have been proposed to generate Dyck words. Proskurowski and
Ruskey [15] devised a transposition Gray code for Dyck words. Later, efficient algo-
rithms to generate such a listing were presented in [17,28]. Bultena and Ruskey [5],
and later van Baronaigien [26] and Xiang et al. [32], developed algorithms to generate
homogeneous transposition Gray codes for Dyck words. For example, the algorithm by
Bultena and Ruskey generates the 42 Dyck words for n = 10 as follows:
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0101010101, 0011010101, 0010110101, 0100110101, 0001110101, 0001101101,
0100101101, 0010101101, 0011001101, 0101001101, 0100011101, 0010011101,
0001011101, 0000111101, 0000111011, 0001011011, 0010011011, 0100011011,
0101001011, 0011001011, 0010101011, 0100101011, 0001101011, 0001110011,
0100110011, 0010110011, 0011010011, 0101010011, 0101000111, 0011000111,
0010100111, 0100100111, 0001100111, 0001010111, 0010010111, 0100010111,
0000110111, 0000101111, 0001001111, 0010001111, 0100001111, 0000011111.

The Gray code is said to be homogeneous, where the bits between the swapped 0 and
1 are all 0s. Additionally, the Gray code is also a suffix-partitioned Gray code, where
strings with the same suffix are contiguous. Vajnovszki and Walsh [25] discovered an
even more restrictive Gray code that is two-close, where a 1 exchanges its position with
an adjacent 0 or a 0 that is separated from it by a single 0. In contrast, Ruskey and
Williams [18] provided a shift Gray code for Dyck words where consecutive strings
differ by a prefix shift.

For ballot sequences, the problem of finding a Gray code for ballot sequences was first
studied by Sabri and Vajnovszki [19]. Sabri and Vajnovszki proved that one definition
of the reflected Gray code induces a 3-Gray code for k-ary ballot sequences, which
is a generalization of ballot sequences that involves more than two candidates. Wong
et al. [31] later provided an efficient algorithm to generate a 2-Gray code for ballot
sequences. For example, the algorithm by Wong et al. generates the following cyclic
2-Gray code for ballot sequences for n = 6:

000111, 010011, 000011, 001011, 001001, 000001, 010001, 010101, 000101, 001101,
001100, 000100, 010100, 010000, 000000, 001000, 001010, 000010, 010010, 000110.

Another approach by Wong et al. to obtain a cyclic 2-Gray code for ballot sequences
is by filtering the BRGC [31]. For more information about Gray codes induced by
the BRGC, see [21] and [22]. However, these Gray codes for ballot sequences are not
homogeneous. The greedy algorithm proposed in this paper can be used to generate the
first known homogeneous 2-Gray code for ballot sequences.

2 Gray codes for Dyck words and fixed-weight Dyck prefixes

In this section, we present a greedy algorithm to generate transposition Gray codes for
fixed-weight Dyck prefixes and Dyck words.

In [30], Williams proposed a greedy algorithm to generate a transposition Gray code
for combinations. The greedy algorithm by Williams can be summarized as follows:

Greedy Gray code algorithm for k-combinations: Starts with 1k0n−k. Greed-
ily swap the leftmost possible 1 with the leftmost possible 0 before the next 1
and after the previous 1 (if there are any) such that the resulting string has not
appeared before.

For example, the greedy algorithm generates the following 4-combinations for n = 7:
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1111000, 1110100, 1101100, 1011100, 0111100, 0111010, 1011010,
1101010, 1110010, 1100110, 1010110, 0110110, 0101110, 1001110,
0011110, 0011101, 1001101, 0101101, 0110101, 1010101, 1100101,
1110001, 1101001, 1011001, 0111001, 0110011, 1010011, 1100011,
1001011, 0101011, 0011011, 0010111, 1000111, 0100111, 0001111.

We generalize the idea to fixed-weight Dyck prefixes and Dyck words. The weight of a
binary string is the number of 1s it contains. A fixed-weight Dyck prefix of weight k is
a prefix of a Dyck word with its weight equal to k. Note that when 2k = n, then the set
of fixed-weight Dyck prefixes of weight k is equivalent to the set of Dyck words. The
following simple greedy algorithm generates transposition Gray codes for fixed-weight
Dyck prefixes and Dyck words of length n:

Greedy Gray code algorithm for fixed-weight Dyck prefixes: Starts with
(01)k0n−2k. Greedily swap the leftmost possible 1 with the leftmost possible
0 before the next 1 and after the previous 1 (if there are any) such that the
resulting string is a Dyck prefix and has not appeared before.

Our Gray codes for fixed-weight Dyck prefixes and Dyck words are homogeneous and
suffix-partitioned. Another way to understand the greedy algorithm is to greedily swap
the leftmost possible 1 with the leftmost possible 0 in a homogeneous manner. As an
example, the greedy algorithm generates the following Gray code for Dyck words for
n = 10 (Dyck prefixes for n = 10 and k = 5):

0101010101, 0011010101, 0010110101, 0100110101, 0001110101, 0001101101,
0100101101, 0010101101, 0011001101, 0101001101, 0100011101, 0010011101,
0001011101, 0000111101, 0000111011, 0100011011, 0010011011, 0001011011,
0001101011, 0100101011, 0010101011, 0011001011, 0101001011, 0101010011,
0011010011, 0010110011, 0100110011, 0001110011, 0001100111, 0100100111,
0010100111, 0011000111, 0101000111, 0100010111, 0010010111, 0001010111,
0000110111, 0000101111, 0100001111, 0010001111, 0001001111, 0000011111.

Greedy Gray codes have been studied previously, with Williams [30] reinterpreting
many classic Gray codes for binary strings, permutations, combinations, binary trees,
and set partitions using a simple greedy algorithm. The algorithm presented in this paper
can be considered as a novel addition to the family of greedy algorithms previously
studied by Williams.

All strings considered in this paper are binary. Our algorithm uses a vector representa-
tion S1S2 · · ·Sk to represent a binary string with k ones, where each integer Si corre-
sponds to the position of the i-th one of the binary string. For example, the string α =
000110100011001 can be represented by S1, S2, S3, S4, S5, S6 = 4, 5, 7, 11, 12, 15.
We initialize the array S1, S2, . . . , Sk = 2, 4, . . . , 2k for both Dyck words and fixed-
weight Dyck prefixes. In addition, we set S0 = 0 and Sk+1 = n + 1. Pseudocode of
the greedy algorithm to generate fixed-weight Dyck prefixes and Dyck words is given
in Algorithm 1.
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Algorithm 1 The greedy algorithm that generates a homogeneous transposition Gray
code for fixed-weight Dyck prefixes and Dyck words.
1: procedure GREEDY-KDYCK-PREFIXES

2: S1S2 · · ·Sk ← 2 4 · · · 2k
3: Print(S1S2 · · ·Sk)
4: for i from 1 to k do
5: for j from MAX(Si−1 + 1, i× 2) to Si+1 − 1 do
6: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then
7: Si ← j
8: go to 4

Theorem 1. The algorithm Greedy-kDyck-Prefixes generates a homogeneous transpo-
sition Gray code for fixed-weight Dyck prefixes that is suffix-partitioned for all n and k
where 2k ≤ n.

3 Proof of Theorem 1

In this section, we prove Theorem 1 for fixed-weight Dyck prefixes. The results also
apply to Dyck words as the set of Dyck words is equivalent to the set of fixed-weight
Dyck prefixes when 2k = n. To this end, we begin by proving the following lemmas
for fixed-weight Dyck prefixes.

Lemma 1. The algorithm Greedy-kDyck-Prefixes terminates after visiting the Dyck
prefix 0n−k1k.

Proof. Assume the algorithm terminates after visiting some string b1b2 · · · bn ̸= 0n−k1k.
Since b1b2 · · · bn ̸= 0n−k1k, it must contain the suffix 10i1j for some n − k > i > 0
and k > j > 0. It follows by the greedy algorithm that there exists a Dyck prefix of
length n and weight k with the suffix 0i1j+1 in the listing since the algorithm termi-
nates after visiting a string with the suffix 10i1j . If j + 1 = k, then clearly the only
string with the suffix 0i1k is 0n−k1k. However, this string has a predecessor since it
is not the initial string of the greedy algorithm. Moreover, by the greedy algorithm the
predecessor of 0n−k1k is 0t10n−k−t1k−1 for some n − k > t > 0, and all Dyck pre-
fixes of length n and weight k with the suffix 01k−1 must have appeared before 0n−k1k

in the listing. Therefore, the algorithm should terminate after visiting 0n−k1k, a con-
tradiction. Otherwise if j + 1 < k, then let α be the last string in the listing with the
suffix 10t1j+1 for some n − j − 2 > t > 0. Since α appears before b1b2 · · · bn in the
listing and b1b2 · · · bn has the suffix 10i1j , the algorithm must transpose the first 1 in
the suffix 1j+1 of α with a 0 on the left to produce a later string with the suffix 01j .
It follows by the greedy algorithm that this is only possible if a string with the suffix
0t1j+2 appears before in the listing. Recursively applying the same argument implies
that 0n−k1k exists in the listing, a contradiction since the algorithm would terminate
after visiting 0n−k1k as discussed in the case of j + 1 = k. Therefore by proof by
contradiction, the greedy algorithm terminates after visiting 0n−k1k.
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Lemma 2. If 0i1j0t1γ is a length n Dyck prefix with weight k for some i > 0, k >
j > 0, and t > 0, then the non-existence of 0i1j0t1γ in the greedy listing implies the
non-existence of 0i1j−1010t−11γ in the greedy listing.

Proof. We prove the lemma by contrapositive. Suppose α = 0i1j0t1γ is a Dyck prefix
of weight k. Clearly β = 0i1j−1010t−11γ is also a Dyck prefix of weight k and now
consider the possible predecessor of β in our greedy listing. If the predecessor of β is
of the form 0i−p10p1j−2010t−11γ for some p > 0, then by the greedy algorithm, all
Dyck prefixes of length n and weight k with the suffix 01j−2010t−11γ should have
appeared previously. The next string generated by the algorithm after β is thus α if α
has not appeared before, or otherwise α must have appeared previously. In either case,
α exists in the listing. Otherwise if the predecessor of β shares the same prefix 0i1j−1

as β, then by the greedy algorithm, this is only possible if α appears before in the listing
or α is the predecessor of β. Therefore, the string α exists if β exists, which completes
the proof by contrapositive.

We now prove Theorem 1 using the lemmas we proved in this section.

Theorem 1. The algorithm Greedy-kDyck-Prefixes generates a homogeneous transpo-
sition Gray code for fixed-weight Dyck prefixes that is suffix-partitioned for all n and k
where 2k ≤ n.

Proof. Our algorithm permits only homogeneous transposition operations, and the list-
ing is suffix-partitioned (as shown in Lemma 2). To demonstrate the Gray code property
of our algorithm, we now prove it by contradiction.

Since the greedy algorithm ensures that there is no duplicated length n string in the
greedy listing, it suffices to show that each Dyck prefix of length n and weight k appears
in the listing.

Assume by contradiction that there exists a Dyck prefix b1b2 · · · bn ̸= 0n−k1k that
does not appear in the listing. Since b1b2 · · · bn ̸= 0n−k1k, the string b1b2 · · · bn con-
tains the substring 10. Let b1b2 · · · bn = 0i1j0t1γ for some i > 0, k > j > 0, and
t > 0. Clearly, the string 0i1j−1010t−11γ is a Dyck prefix and by Lemma 2, the string
0i1j−1010t−11γ also does not exist in the greedy Dyck prefix listing. Repeatedly ap-
plying the same argument on 0i1j−1010t−11γ implies that the strings 0i+11j0t−11γ
and eventually 0n−k1k also do not exist in the listing, a contradiction to Lemma 1.

4 Gray codes for ballot sequences

In this section, we leverage Theorem 1 to construct the first known homogeneous 2-
Gray code for ballot sequences. Our approach is to interleave strings from listings of
homogeneous transposition Gray codes for fixed-weight Dyck prefixes, across all pos-
sible weight k, in order to create the homogeneous 2-Gray code for ballot sequences.
To achieve this, we first prove the following lemma.

Lemma 3. The string b1b2 · · · bn−11 is a Dyck prefix if and only if b1b2 · · · bn−10 is a
Dyck prefix, provided that 2k < n− 1.
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Proof. The forward direction is straightforward. For the backward direction, suppose
that 2k < n−1 and that the string b1b2 · · · bn−10 is a Dyck prefix. Since 2k < n−1, the
prefix b1b2 · · · bn−1 has more 0s than 1s and thus both b1b2 · · · bn−11 and b1b2 · · · bn−10
are Dyck prefixes.

By Lemma 3, we can establish a one-to-one correspondence between Dyck prefixes
b1b2 · · · bn−11 of weight k + 1 and Dyck prefixes b1b2 · · · bn−10 of weight k when
2k < n. This correspondence enables us to construct a homogeneous 2-Gray code for
ballot sequences.

The main idea of our algorithm is to utilize the same greedy strategy used for generating
fixed-weight Dyck prefixes, with the addition of generating the correspondence to the
generated Dyck prefix by Lemma 3. Specifically, whenever we produce a Dyck prefix
b1b2 · · · bn that terminates with a 1, we also generate its corresponding Dyck prefix
b1b2 · · · bn−10. Conversely, when we generate a Dyck prefix b1b2 · · · bn that concludes
with a 0 with 2k < n−1, we also generate its corresponding Dyck prefix b1b2 · · · bn−11.
Furthermore, if the application of the greedy strategy fails to produce a new string,
we proceed to complement the last 1 in b1b2 · · · bn−1 and then update the value of
bn = 1. By making two relatively minor changes to the Algorithm 1, we can generate a
homogeneous 2-Gray code for ballot sequences:

1. Before applying the greedy strategy to the current string S1S2 · · ·Sk, test whether
Sk = n or Sk < n but with weight k < ⌊n

2 ⌋. If Sk = n, then the algorithm
generates its corresponding Dyck prefix S1S2 · · ·Sk−1. Similarly, if Sk < n but
with weight k < ⌊n

2 ⌋, then the algorithm generates its corresponding Dyck prefix
S1S2 · · ·Skn;

2. After applying the greedy strategy to the current string S1S2 · · ·Sk and it does not
lead to the generation of any new string. If Sk = n, then the next string in the
sequence is S1S2 · · ·Sk−2n. On the other hand, if Sk < n, then the following
string in the sequence is S1S2 · · ·Sk−1n.

The algorithm starts with the initial string (01)k0n−2k with k = ⌊n
2 ⌋. Pseudocode of

the algorithm to generate the Gray code for ballot sequences is given in Algorithm 2.
As an example, the algorithm generates the following homogeneous 2-Gray code for
ballot sequences for n = 7:

0101010, 0011010, 0010110, 0100110, 0001110, 0001101, 0001100,
0100100, 0100101, 0010101, 0010100, 0011000, 0011001, 0101001,
0101000, 0100010, 0100011, 0010011, 0010010, 0001010, 0001011,
0000111, 0000110, 0000101, 0000100, 0100000, 0100001, 0010001,
0010000, 0001000, 0001001, 0000011, 0000010, 0000001, 0000000.

Let α be a prefix of a Dyck word, and G(α) be the list of strings obtained by applying
Algorithm 1 with α as initial string. Clearly, for any such string α, G(α) contains pre-
fixes of Dyck words of the same length and same number of 1s as α, and in G(α) there
are no repeated strings.
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Algorithm 2 The greedy algorithm that generates a homogeneous 2-Gray code for bal-
lot sequences.
1: procedure GREEDY-BALLOT

2: k = ⌊n
2
⌋

3: S1S2 · · ·Sk ← 2 4 · · · 2k
4: Print(S1S2 · · ·Sk)
5: if Sk = n then
6: Sk ← n+ 1
7: k ← k − 1
8: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then go to 4
9: k ← k + 1

10: Sk ← n
11: else if k < ⌊n

2
⌋ then

12: Sk+1 ← n
13: k ← k + 1
14: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then go to 4
15: k ← k − 1
16: Sk+1 ← n+ 1

17: for i from 1 to k do
18: for j from MAX(Si−1 + 1, i× 2) to Si+1 − 1 do
19: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then
20: Si ← j
21: go to 4
22: if Sk = n then
23: Sk ← n+ 1
24: Sk−1 ← n
25: k ← k − 1
26: go to 4
27: else if Sk = n− 1 then
28: Sk ← n
29: go to 4

Theorem 2. The algorithm Greedy-Ballot generates a homogeneous 2-Gray code for
ballot sequences for all n.

Proof. The algorithm Greedy-Ballot starts with the string (01)⌊
n
2 ⌋0n mod 2 with k =

⌊n
2 ⌋. By Theorem 1, the algorithm generates all strings in G((01)⌊n

2 ⌋0n mod 2) which
contains all Dyck prefixes of weight k = ⌊n

2 ⌋. Furthermore, according to Lemma 3 and
lines 5-16 of the algorithm, the algorithm also generates all Dyck prefixes of weight
⌊n
2 ⌋ − 1 that end with a 0.

Since G((01)⌊n
2 ⌋0n mod 2) ends with 0n−⌊n

2 ⌋1⌊
n
2 ⌋, the algorithm generates all Dyck pre-

fixes of weight k = ⌊n
2 ⌋ and Dyck prefixes of weight ⌊n

2 ⌋ − 1 that end with a 0 until
it reaches the string 0n−⌊n

2 ⌋1⌊
n
2 ⌋ or 0n−⌊n

2 ⌋1⌊
n
2 ⌋−10. Then, as indicated in lines 22-

29 of the algorithm, the next string generated by the algorithm is 0n−⌊n
2 ⌋1⌊

n
2 ⌋−201.

Observe that 0n−⌊n
2 ⌋1⌊

n
2 ⌋−201 is generated in G((01)⌊n

2 ⌋−1020n mod 2) by Algorithm 1
after exhaustively generating all Dyck prefixes of weight ⌊n

2 ⌋ − 1 that end with a 0.
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Since all Dyck prefixes of weight ⌊n
2 ⌋ − 1 that end with a 0 have already been gen-

erated in our ballot sequence algorithm, the algorithm follows the same operations as
G(0n−⌊n

2 ⌋1⌊
n
2 ⌋−201) and proceeds to generate all Dyck prefixes of weight ⌊n

2 ⌋−1 that
end with a 1. Therefore, all Dyck prefixes of weight ⌊n

2 ⌋−1 are in the listing generated
by the algorithm.

By repeatedly applying the same argument, the algorithm generates the fixed-weight
Dyck prefixes with weight ranging from k to 0, which is the set of all ballot sequences
of length n.

Moreover, since each listing in G is a homogeneous transposition Gray code and the op-
erations in lines 5-16 and 22-29 of the algorithm only involve removing a 1 or swapping
two nearby bits, the resulting sequence generated by the algorithm is a homogeneous
2-Gray code.

5 Final Remarks

It is worth noting that an alternative homogeneous 2-Gray code for ballot sequences
can be constructed by concatenating the homogeneous transposition Gray code listings
of fixed-weight Dyck prefixes ranging from weight k to 0, and reversing the listings of
fixed-weight Dyck prefixes with even (or odd) weights. For instance, let G(α) denote
the reverse of the list of strings generated by applying Algorithm 1 with α as the initial
string. A homogeneous 2-Gray code for ballot sequences for n = 7 can be obtained
by G(0101010) · G(0101000) · G(0100000) · G(0000000), which would result in the
following listing:

0101010, 0011010, 0010110, 0100110, 0001110, 0001101, 0100101,
0010101, 0011001, 0101001, 0100011, 0010011, 0001011, 0000111,
0000011, 0001001, 0010001, 0100001, 0000101, 0000110, 0010010,
0100010, 0001010, 0001100, 0100100, 0010100, 0011000, 0101000,
0100000, 0010000, 0001000, 0000100, 0000010, 0000001, 0000000.

There is, however, no known simple algorithm to generate the reverse of the sequence
generated by our algorithm for fixed-weight Dyck prefixes. This remains an open prob-
lem for future research.

Finally, efficient algorithms that generate the same Gray codes for Dyck words, fixed-
weight Dyck prefixes and ballot sequences in constant amortized time per string were
developed, and their details will be presented in the full version of the paper.
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Appendix: C code to generate homogeneous 2-Gray codes for k-combinations,
Dyck words, fixed-weight Dyck prefixes, and ballot sequences

#include <stdio.h>
#include <stdlib.h>
#define INF 99999
#define MAX(a,b) (((a)>(b))?(a):(b))

int n, k, type, total = 0, s[INF], p[INF];

//-------------------------------------------------
int binToDec() {

int i, j = 1, t = 0;
for(i=1; i<=n; i++) if (s[j]==i) {t = t+(1<<(n-i)); j++;}
return t;

}

//-------------------------------------------------
int greedy() {

int i, j, t, r;

if (type==4) {
if (s[k]==n) {

s[k] = n+1; k--;
if (!p[binToDec()]) {p[binToDec()] = 1; return 1;}
k++; s[k] = n;

}
else if (k<n/2) {

s[k+1] = n; k++;
if (!p[binToDec()]) {p[binToDec()] = 1; return 1;}
k--; s[k+1] = n+1;

}
}

for (i=1; i<=k; i++) {
if (type==1) r = s[i-1]+1;
else r = MAX(s[i-1]+1, i*2);

for (j=r; j<s[i+1]; j++) {
t = s[i]; s[i] = j;
if (!p[binToDec()]) {p[binToDec()] = 1; return 1;}
s[i] = t;

}
}

if (type==4) {
if (s[k]==n) {

s[k] = n+1; s[k-1] = n; k--;
p[binToDec()] = 1; return 1;

}
else if (s[k]==n-1) {

s[k] = n;
p[binToDec()] = 1; return 1;

}
}
return 0;

}

//-------------------------------------------------
int main() {

int i, j;

printf(" =========================================\n");
printf(" 1. Combinations\n");
printf(" 2. Dyck words\n");
printf(" 3. Prefix of Dyck words of weight k\n");
printf(" 4. Ballot sequences\n");
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printf(" =========================================\n");

printf(" Enter selection #: "); scanf("%d", &type);

printf(" ENTER n: "); scanf("%d", &n);
if (type!=2 && type!=4) {printf(" ENTER k: "); scanf("%d", &k);}
else k = n/2;
if (type==2 && n%2>0) {printf("n must be an even number. \n"); exit(0);}
if (type==3 && k>n/2) {printf("k must be less than or equal to n/2. \n"); exit

(0);}

for (i=0; i<INF; i++) p[i] = 0;
for (i=0; i<=k; i++) {if (type!=1) s[i] = i*2; else s[i] = i;}

s[0] = 0; s[k+1] = n+1;
p[binToDec()] = 1;

do {
j = 1;
for (i=1; i<=n; i++) if (s[j]!=i) printf("0"); else {printf("1"); j++;}
printf("\n"); total++;

} while(greedy());
printf("Total = %d\n", total);

}
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