
Two Reflected Gray Code based orders

on some restricted growth sequences

Ahmad Sabri and Vincent Vajnovszki

LE2I, Université de Bourgogne

BP 47870, 21078 Dijon Cedex, France

{ahmad.sabri}{vvajnov}@u-bourgogne.fr

January 23, 2014

Abstract

We consider two order relations: that induced by the m-ary reflected Gray code and a
suffix partitioned variation of it. We show that both of them when applied to some sets of
restricted growth sequences still yield Gray codes. These sets of sequences are: subexcedant
and ascent sequences, restricted growth functions and staircase words. In particular, we give
the first suffix partitioned Gray codes for restricted growth functions and ascent sequences;
these latter sequences code various combinatorial classes as interval orders, upper triangular
matrices without zero rows and zero columns whose non-negative integer entries sum up to n,
and certain pattern-avoiding permutations. For each Gray code we give efficient exhaustive
generating algorithms and compare the obtained results.

1 Introduction and motivations

The term “Gray code” was taken from Frank Gray, who patented Binary Reflected Gray Code
(BRGC) in 1953 [1]. The concept of BRGC is extended to Reflected Gray Code (RGC), to
accommodate m-ary sequences, with m > 2 [2]. In these Gray codes, successive sequence differ
in a single position, and by +1 or −1 in this position. More generally, if a list of sequences is
such that the Hamming distance between successive sequences (the number of positions in which
the sequences differ) is bounded from above by a constant d, then the list is said to be a d-Gray
code. So, in particular, BRGC and RGC are 1-Gray codes. In addition, if the positions where
the successive sequences differ are adjacent, then we say that the list is a d-adjacent Gray code.

For a long time, the design of Gray codes for combinatorial classes and their corresponding
generating algorithms was an ad-hoc task, that is, done case by case according to the class under
consideration. Recently, general techniques which fit to large classes of combinatorial objects
were developed and used. Among them are, for example, reflectable languages [3] (see also [4]
for defining sequences and [5] for stability property techniques), prefix rotations (yielding bubble
languages, see [6, 7] and references therein), and Reflected Gray Code based order relations;
this last technique was used implicitly, for example in [8, 9], and developed systematically as
a general method in order to define Gray codes (and corresponding generating algorithms)
for various classes as Fibonacci and Lucas strings, restricted compositions, Lyndon words and
relatives [10–14]. The results presented in this paper are in the light of this last direction. More
precisely, we show that two order relations induced by Reflected Gray Code and its variation also

1

give Gray codes for some classes of restricted growth sequences defined by means of statistics.
These classes are: subexcedant and ascent sequences, restricted growth functions, and staircase
words. We give efficient (CAT) generating algorithm for each obtained Gray code.

For the combinatorial classes we consider in this paper, there already exist Gray codes
for them, see for instance [15–17]. The novelty of those presented here consists in that their
definitions are put under the same roof: RGC inspired order relations. As a consequence of these
constructions it follows that if U and V are two such classes, and U ⊂ V, then the Gray code
for U is a (possibly scattered) sublist of that of V . Moreover, some applications may require
suffix partitioned Gray code lists, and in this case general techniques as reflectable languages
can not be applied in order to define Gray codes. Indeed, some suffixes of ascent sequences,
restricted growth functions or staircase words are not extendible in at least two different ways
as required by this technique, and the codes we present in Section 4 are suffix partitioned.
Additionally, our generating algorithms for suffix partitioned lists are more appropriate for
large-scale parallelization.

2 Preliminaries

2.1 Gray code orders

Let Gn(m) be the set of length n m-ary sequences s1s2 . . . sn with si ∈ {0, 1, . . . ,m−1}; clearly,
Gn(m) is the product set {0, 1, . . . ,m − 1}n. The Reflected Gray Code (RGC for short) for the
set Gn(m), denoted by Gn(m), is the natural extension of the Binary Reflected Gray Code to
this set. The list Gn(m) is defined recursively by the following relation [2]:

Gn(m) =

{
ǫ if n = 0,

0Gn−1(m), 1Gn−1(m), 2Gn−1(m), . . . , (m − 1)G′
n−1(m) if n > 0,

(1)

where ǫ is the empty sequence, Gn−1(m) is the reverse of Gn−1(m), and G′
n−1(m) is Gn−1(m) or

Gn−1(m) according to m is odd or even.
In Gn(m), two successive sequences differ in a single position and by +1 or −1 in this position.

A list for a set of sequences induces an order relation to this set, and we give two order relations
induced by the RGC and its variation, namely RGC order [10] and Co-RGC order.

We adopt the convention that lower case bold letters represent tuples, for example: s =
s1s2 . . . sn, a = a1a2 . . . ak, and b = bk+1bk+2 . . . bn.

Definition 1. The Reflected Gray Code order ≺ on Gn(m) is defined as: s = s1s2 . . . sn is less
than t = t1t2 . . . tn, denoted by s ≺ t, if either

•
∑k−1

i=1
si is even and sk < tk, or

•
∑k−1

i=1
si is odd and sk > tk,

where k is the leftmost position where s and t differ.

It is easy to see that Gn(m) defined in relation (1) lists sequences in Gn(m) in ≺ order.
Now we give a variation of Gn(m). Let s1s2 . . . sn be a sequence in Gn(m). The complement

of si, 1 ≤ i ≤ n, is
(m − 1 − si),

2

and the reverse of s1s2 . . . sn is
snsn−1 . . . s1.

Let G̃n(m) be the list obtained by transforming each sequence s in Gn(m) as follows:

• complementing each digit in s if m is even, or complementing only digits in odd positions
if m is odd, then

• reversing the obtained sequence.

Clearly, G̃n(m) is also a Gray code for Gn(m), and the sequences therein are listed in Co-Reflected
Gray Code order, as defined formally below.

Definition 2. The Co-Reflected Gray Code order ≺c on Gn(m) is defined as:
s = s1s2 . . . sn is less than t = t1t2 . . . tn, denoted by s≺ct, if either

•
∑n

i=k+1
si + (n − k) is even and sk > tk, or

•
∑n

i=k+1
si + (n − k) is odd and sk < tk,

where k is the rightmost position where s and t differ.

Although this definition sounds somewhat arbitrary, as we will see in Section 4, it turns out
that ≺c order gives suffix partitioned Gray codes for some sets of restricted growth sequences.
Obviously, the restriction of Gn(m) (resp. G̃n(m)) to a set of sequences is simply the list of
sequences in the set listed in ≺ (resp. ≺c) order.

2.2 Restricted growth sequences defined by means of statistics

Through this paper we consider sequences over non-negative integers. A statistic on a set of
sequences is an association of an integer to each sequence in the set. For a sequence s1s2 . . . sn,
its length minus one, numbers of ascents/levels/descents, maximal value, and last value are
classical examples of statistics. They are defined as follows, see also [17]:

• len(s1s2 . . . sn) = n − 1;

• asc(s1s2 . . . sn) = card{i | 1 ≤ i < n and si < si+1};

• lev(s1s2 . . . sn) = card{i | 1 ≤ i < n and si = si+1};

• des(s1s2 . . . sn) = card{i | 1 ≤ i < n and si > si+1};

• m(s1s2 . . . sn) = max{s1, s2, . . . , sn};

• lv(s1s2 . . . sn) = sn.

If st is one of the statistics len, asc, m, and lv, then st satisfy the following:

st(s1s2 . . . sn) ≤ n − 1, (2)

and
if sn = st(s1s2 . . . sn−1) + 1, then sn = st(s1s2 . . . sn−1sn). (3)

On the contrary, the statistics lev and des do not satisfy relation (3). Accordingly, through this
paper we will consider only the four statistics above. However, as we will point out, some of the
results presented here are also true for arbitrary statistics satisfying relations (2) and (3).

3

Definition 3. For a given statistic st, an st-restricted growth sequence s1s2 . . . sn is a sequence
with s1 = 0 and

0 ≤ sk+1 ≤ st(s1s2 . . . sk) + 1 for 1 ≤ k < n, (4)

and the set of st-restricted growth sequences is the set of all sequences s1s2 . . . sn satisfying
relation (4).

From this definition, it follows that any prefix of an st-restricted growth sequence is also (a
shorter) st-restricted growth sequence.

Remark 1. If st is a statistic satisfying relations (2) and (3) above, then

1. max{st(s1s2 . . . sn) | s1s2 . . . sn is an st-restricted growth sequence} = n − 1;

2. if s1s2 . . . sn is an st-restricted growth sequence, then for any k, 1 ≤ k < n, sk+1 =
st(s1s2 . . . sk) + 1 implies sk+1 = st(s1s2 . . . sksk+1).

The sets of st-restricted growth sequences, where st is one of the statistics len, asc, m, and
lv, are defined below.

• The set SEn of subexcedant sequences of length n is defined as:

SEn = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ len(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

SEn is trivially in bijection with the set of length n permutations; and so, it is counted by
n!. Notice that alternatively, SEn = {0} × {0, 1} × . . . × {0, 1, . . . , n − 1}.

• The set An of ascent sequences of length n (originally appeared in [18] as a tool to
enumerate interval orders and were extensively studied thereafter in [19–22]) is defined
as:

An = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ asc(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

An is in one-to-one correspondence with Stoimenow’s diagrams, certain upper triangular
matrices and some pattern-avoiding permutations (see Section 3.2 in [23]). The generating
function for the sequence counting An is shown in [18] to be

∑
n≥0

∏n
i=1

(1 − (1 − x)i).

• The set Rn of restricted growth functions of length n is defined as:

Rn = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ m(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

Rn is in bijection with the partitions of the set {1, 2, . . . n} (see for instance [15]) and is
counted by the Bell numbers bn, with the generating function eex−1.

• The set Sn of staircase words of length n is defined as:

Sn = {s1s2 . . . sn | s1 = 0 and 0 ≤ sk+1 ≤ lv(s1s2 . . . sk) + 1 for 1 ≤ k < n}.

Sn is counted by Catalan numbers (see [24, exercise u, p. 222]) with the generating function
1−

√
1−4x

2x
.

4

Remark 2. Sn ⊂ Rn ⊂ An ⊂ SEn ⊂ Gn(n).

Below we give examples to illustrate Remark 2.

Example 1.

• If s = 010145, then s ∈ SE6, but s /∈ A6, s /∈ R6 and s /∈ S6.

• If s = 010103, then s ∈ SE6, s ∈ A6, but s /∈ R6 and s /∈ S6.

• If s = 010102, then s ∈ SE6, s ∈ A6, and s ∈ R6, but s /∈ S6.

• If s = 010101, then s ∈ SE6, s ∈ A6, s ∈ R6 and s ∈ S6.

See Table 3 for the sets S5, R5, and A5 listed in ≺ order, and Table 4 for the same sets listed in
≺c order.
We denote by

• Xn the list for the set Xn in ≺ order, and by X̃ n that in ≺c order;

• succX(s), s ∈ Xn, the successor of s in the set Xn listed in ≺ order; that is, the smallest
sequence in Xn larger than s with respect to ≺ order;

• s̃uccX(s) the counterpart of succX(s) with respect to ≺c order;

• first(L) the first sequence in the list L;

• last(L) the last sequence in the list L.

2.3 Constant Amortized Time algorithms and principle

An exhaustive generating algorithm is said to run in constant amortized time (CAT for short)
if the total amount of computation is proportional to the number of generated objects. And so,
a CAT algorithm can be considered an efficient algorithm.

Ruskey and van Baronaigien [25] introduced three CAT properties, and proved that if a
recursive generating procedure satisfies them, then it runs in constant amortized time (see
also [16]). They called this general technique to prove the efficiency of a generating algorithm
as CAT principle, and the involved properties are:

1. Every call of the procedure results in the output of at least one object;

2. Excluding the computation done by the recursive calls, the amount of computation of any
call is proportional to the degree of the call, that is, the number of call initiated by the
current call;

3. The number of calls of degree one, if any, is O(N), where N is the number of generated
objects.

All the generating algorithms we present in this paper satisfy these three desiderata, and so they
are efficient.

5

3 The Reflected Gray Code order for the sets SEn, An, Rn, and

Sn

3.1 The bound of Hamming distance between successive sequences in the

lists SEn, An, Rn, and Sn

Here we will show that the Hamming distance between two successive sequences in each of the
mentioned lists is upper bounded by a constant, and so the lists are Gray codes.

Without another specification, Xn generically denotes one of the sets SEn, An, Rn, or Sn;
and Xn denotes its corresponding list in ≺ order, that is, one of the lists SEn, An, Rn, or Sn.
Later in this section, Theorem 1 and Proposition 2 state that, in each case, the set Xn listed in
≺ order yields a Gray code.

Lemma 1. If s = s1s2 . . . sn and t = t1t2 . . . tn are two sequences in Xn with t = succX(s) and
k is the leftmost position where they differ, then sk = tk + 1 or sk = tk − 1.

Proof. Let t = succX(s) and k be the leftmost position where they differ. Let us suppose that
sk < tk and sk 6= tk − 1 (the case sk > tk and sk 6= tk + 1 being similar).
It is easy to check that

u = s1s2 . . . sk−1(sk + 1)0 . . . 0

belongs to Xn, and considering the definition of ≺ order relation, it follows that s ≺ u ≺ t,
which is in contradiction with t = succX(s), and the statement holds.

If a = a1a2 . . . ak ∈ Xk, then for any n > k, a is the prefix of at least one sequence in Xn,
and we denote by a | Xn the sublist of Xn of all sequences having the prefix a. Clearly, a list
in ≺ order for a set of sequences is a prefix partitioned list (all sequences with same prefix are
contiguous), and for any a ∈ Xk and n > k, it follows that a | Xn is a contiguous sublist of Xn.

For a given a ∈ Xk, the set of all x such that ax ∈ Xk+1 is called the defining set of the
prefix a, and obviously ax is also a prefix of some sequences in Xn, for any n > k. We denote
by

ωX(a) = max{x |ax ∈ Xk+1} (5)

the largest value in the defining set of a. And if we denote ωX(a) by M , then by Remark 1 we
have

M = st(a) + 1
= st(aM).

And consequently,
ωX(aM) = st(aM) + 1

= M + 1.
(6)

The next proposition gives the pattern of s ∈ Xn, if s = last(a | Xn) or s = first(a | Xn).

Proposition 1. Let k < n and a = a1a2 . . . ak ∈ Xk. If s = last(a | Xn), then the pattern of s

is given by:

• if
∑k

i=1
ai is odd, then s = a0 . . . 0;

• if
∑k

i=1
ai is even and M is odd, then s = aM0 . . . 0;

• if
∑k

i=1
ai is even and M is even, then s = aM(M + 1)0 . . . 0;

6

where M denotes ωX(a).
Similar results hold for s = first(a | Xn) by replacing ‘odd’ by ‘even’, and vice versa, for the
parity of

∑k
i=1

ai.

Proof. Let s = a1a2 . . . aksk+1 . . . sn = last(a | Xn).
If

∑k
i=1

ai is odd, then by considering the definition of ≺ order, it follows that sk+1 is the smallest
value in the defining set of a, and so sk+1 = 0, and finally s = a0 . . . 0, and the first point holds.
Now let us suppose that

∑k
i=1

ai is even. In this case sk+1 equals ωX(a) = M , the largest value
in the defining set of a. When in addition M is odd, so is the summation of aM , the length
k + 1 prefix of s, and thus s = aM0 . . . 0, and the second point holds.
Finally, when M is even, then sk+2 is the largest value in the defining set of aM , which by
relation (6) is M + 1. In this case M + 1 is odd, and thus s = aM(M + 1)0 . . . 0, and the last
point holds.
The proof for the case s = first(a | Xn) is similar.

By Proposition 1 above, we have the following:

Theorem 1. The lists An, Rn and Sn are 3-adjacent Gray codes.

Proof. Let Xn be one of the lists An, Rn or Sn, and t = succX(s). Let k be the leftmost
position where s and t differ, and let us denote by a the length k prefix of s and a

′ that of t;
so, s = last(a | Xn) and t = first(a′ | Xn). If k + 3 ≤ n, then by Proposition 1, it follows that
sk+3 = sk+4 = · · · = sn = 0 and tk+3 = tk+4 = · · · = tn = 0. So s and t differ only in position
k, and possibly in position k + 1 and in position k + 2.
Now we show the adjacency, that is, if k + 2 ≤ n and sk+1 = tk+1 implies sk+2 = tk+2. If
sk+1 = tk+1, by Lemma 1, it follows that the summation of the length k prefix of s and that of
t have different parity, and two cases can occur:
• sk+1 = tk+1 = 0, and by Proposition 1, it follows that sk+2 = tk+2 = 0; or
• sk+1 = tk+1 6= 0, and thus sk+1 = tk+1 = ω(a) = ω(a′). In this case, ω(a) either is odd and
so sk+2 = tk+2 = 0, or is even and so sk+2 = tk+2 = ω(a) + 1.
In both cases, sk+2 = tk+2.

It is well known that the restriction of Gn(m) defined in relation (1) to any product space
remains a 1-Gray code, see for example [14]. In particular, for SEn = {0} × {0, 1} × . . . ×
{0, 1, . . . , n−1} we have the next proposition. Its proof is simply based on Lemma 1, Proposition 1,
and on the additional remark: for any a ∈ SEk, k < n, it follows that ωSE(a) = k.

Proposition 2. The list SEn is 1-Gray code.

It is worth to mention that for any statistic st satisfying relations (2) and (3), the list in ≺
order for the set of st-restricted growth sequences of length n is an at most 3-Gray code.
Actually, the lists SEn, An, Rn, and Sn are circular Gray codes, that is, the last and the first
sequences in the list differ in the same way. Indeed, by the definition of ≺ order, it follows that:

• first(Xn) = 000 . . . 0;

• last(Xn) = 010 . . . 0;

where Xn is one of the lists SEn, An, Rn, or Sn.

7

3.2 Generating algorithms for the lists SEn, An, Rn, and Sn

Procedure Gen1 in Figure 1 is a general procedure generating exhaustively the list of st-restricted
growth sequences, where st is a statistic satisfying relations (2) and (3). According to particular
instances of the function Omega X called by it (and so, of the statistic st), Gen1 produces
specific st-restricted growth sequences, and in particular the lists SEn, An, Rn, and Sn. From
the length one sequence 0, Gen1 constructs recursively increasing length st-restricted growth
sequences: for a given prefix s1s2 . . . sk it produces all prefixes s1s2 . . . ski, with i covering
(in increasing or decreasing order) the defining set of s1s2 . . . sk; and eventually all length n
st-restricted growth sequences. It has the following parameters:

• k, the position in the sequence s which is updated by the current call;

• x, belongs to the defining set of s1s2 . . . sk−1, and is the value to be assigned to sk;

• dir, the direction (ascending for dir mod 2 = 0 and descending for dir mod 2 = 1) to cover
the defining set of s1s2 . . . sk−1;

• v, the value of the statistic of the prefix s1s2 . . . sk−1 from which the value of the statistic
of the current prefix s1s2 . . . sk is computed. Remark that v = ωX(s1s2 . . . sk−1) − 1.

Function Omega X computes ωX(s1s2 . . . sk) (see relation (5)), and the main call is Gen1(1,0,0,0).

procedure Gen1(k, x, dir, v)
global: n, s;
sk := x;
if k = n then Print s;
else u :=Omega X(v, k);

if dir mod 2 = 0
then for i := 0 to u do

Gen1(k + 1, i, i, u − 1);
else for i := u to 0 do

Gen1(k + 1, i, i + 1, u − 1);
end.

(a)

(i) function Omega SE(w, p)
return p;

end.
(ii) function Omega A(w, p)

if p > 1 and sp > sp−1

then return w + 2;
else return w + 1;

end.

(iii) function Omega R(w, p)
if p > 1 and sp > w
then return w + 2;
else return w + 1;

end.

(iv) function Omega S(w, p)
return sp + 1;

end.
(b)

Figure 1: (a) Algorithm Gen1, generating the list Xn; (b) Particular function Omega X called
by Gen1, and returning the value for ωX(s1s2 . . . sk), if Xn is one of the sets: (i) SEn, (ii) An,
(iii) Rn, and (iv) Sn.

In Gen1 the amount of computation of each call is proportional with the degree of the
call, and there are no degree one calls, and so it satisfies the CAT principle stated at the end
of Section 2, and so it is an efficient generating algorithm. The computational tree of Gen1

8

producing the list A4 is given in Figure 2. Each node at level k, 1 ≤ k ≤ 4, represents prefixes
s1s2 . . . sk, and leaves sequences in A4.

Figure 2: The tree induced by the initial call Gen1(1, 0, 0, 0) for n = 4 and generating the list
A4.

4 The Co-Reflected Gray Code order for the sets SEn, An, Rn,

and Sn

In this section we will consider, as in the previous one, the sets SEn, An, Rn and Sn, but listed
in ≺c order. Our main goal is to prove that the obtained lists are Gray codes as well, and to
develop generating algorithms for these lists.

Recall that Xn generically denotes one of the sets SEn, An, Rn, or Sn; and let X̃ n denote
their corresponding list in ≺c order, that are, S̃En, Ãn, R̃n, or S̃n. Clearly, a set of sequences
listed in ≺c order is a suffix partitioned list, that is, all sequences with same suffix are contiguous,
and such are the lists we consider here.

For a set Xn and a sequence b = bk+1bk+2 . . . bn, we call b an admissible suffix in Xn if there
exists at least a sequence in Xn having suffix b. For example, 124 is an admissible suffix in A6,
because there are sequences in A6 ending with 124, namely 012124 and 010124. On the other
hand, 224 is not an admissible suffix in A6; indeed, there is no length 6 ascent sequence ending
with 224.

We denote by X̃ n | b the sublist of X̃ n of all sequences having suffix b, and clearly, X̃ n | b is
a contiguous sublist of X̃ n. The set of all x such that xb is also an admissible suffix in Xn is
called the defining set of the suffix b.

For ≺ order discussed in Section 3, the characterization of prefixes is straightforward:
a1a2 . . . ak is the prefix of some sequences in Xn, n > k, if and only if a1a2 . . . ak is in Xk.

9

And the defining set of the prefix a1a2 . . . ak is {0, 1, . . . , st(a1a2 . . . ak) + 1}. In the case of ≺c

order, it turns out that similar notions are more complicated: for example, 13 is an admissible
suffix in A5, but 13 is not in A2; and the defining set of the suffix 13 is {0, 2}, because 013 and
213 are both admissible suffixes in A5, but 113 is not. See Table 4 for the set A5 listed in ≺c

order.

4.1 Suffix expansion of sequences in the sets SEn, An, Rn, and Sn

For a suffix partitioned list, we need to build st-restricted growth sequences under consideration
from right to left, i.e., by expanding their suffix. For this purpose, we need the notions defined
below.

Definition 4. Let b = bk+1bk+2 . . . bn, 1 ≤ k < n, an admissible suffix in Xn.

• αX(b) is the set of all elements in the defining set of the suffix b. Formally:

αX(b) = {x |xb is an admissible suffix in Xn},

and for the empty suffix ǫ, αX(ǫ) = {0, 1, . . . , n − 1}.

• µX(b) is the minimum required value of the statistic defining the set Xn, and provided by
a length (k + 1) prefix of a sequence in Xn having suffix b. Formally:

µX(b) = min{st(s1s2 . . . skbk+1) | s1s2 . . . skb ∈ Xn}.

Notice that µX(xb) ∈ {µX(b) − 1, µX(b), x} for x ∈ αX(b).

Remark 3. Let st be one of statistics asc, m or lv, and s = s1s2 . . . sn be an st-restricted growth
sequence. If there is a k < n such that sk+1 = k, then si = i − 1 for all i, 1 ≤ i ≤ k.

Proof. If sk < k − 1, then in each case for st, st(s1s2 . . . sk) < k − 1, which is in contradiction
with sk+1 = k, and so sk = k − 1. Similarly, sk−1 = k − 2, . . . , s2 = 1, and s1 = 0.

Under the conditions in the previous remark, sk+1 = k imposes that all values at the left of
k + 1 in s are uniquely determined. As we will see later, in the induced tree of the generating
algorithm, all descendants of a node with sk+1 = k have degree one, and we will eliminate the
obtained degree-one path in order not to alter the algorithm efficiency.

It is routine to check the following propositions. (Actually, Proposition 3 is a consequence
of Remark 1.)

Proposition 3. Let Xn be one of the sets SEn, An, Rn, or Sn. If b = bk+1bk+2 . . . bn, 1 ≤ k < n,
is an admissible suffix in Xn, then bk+1 ≤ µX(b).

Proposition 4. Let Yn be one of the sets An, Rn, or Sn. If b = bk+1bk+2 . . . bn, 1 ≤ k < n, is
an admissible suffix in Yn, then

1 if b = bn, that is, a length one admissible suffix, then µY (b) = bn;

2 µY (b) = k if and only if bk+1 = k;

3 if xb is also an admissible suffix in Yn (i.e., x ∈ αY (b)) and x ≥ bk+1, then

µY (xb) = max{x, µY (b)}.

10

The following propositions give the values for αX(b) and µX(xb), if Xn is one of the sets
SEn, An, Rn, or Sn. We do not provide the proofs for Propositions 5, 6, 11, and 12, because
they are obviously based on the definition of the corresponding sequences.

Proposition 5. Let b = ǫ or b = bk+1bk+2 . . . bn be an admissible suffix in SEn. Then

αSE(b) =

{
{0, 1, , . . . , n − 1} if b = ǫ,
{0, 1, . . . , k − 1} otherwise.

Proposition 6. Let b = bk+1bk+2 . . . bn be an admissible suffix in SEn and x ∈ αSE(b). Then

µSE(xb) = µSE(b) − 1.

Obviously, for a length one suffix b = bn, it follows that µSE(b) = n − 1.

Example 2. If b = ǫ, and n = 10, then αSE(b) = {0, 1, . . . , 9};
and for b = b10, b10 ∈ {0, 1, . . . , 9}, it follows that µSE(xb) = 9 − 1 = 8, for all x ∈ αSE(b).

Proposition 7. Let b = ǫ or b = bk+1bk+2 . . . bn be an admissible suffix in An. Then

αA(b) =

{0, 1, . . . , n − 1} if b = ǫ,
{k − 1} if µA(b) = k, or µA(b) = k − 1 and bk+1 = 0,
{0, 1, . . . , bk+1 − 1} ∪ {k − 1} if µA(b) = k − 1 and 0 < bk+1 < k,
{0, 1, . . . , k − 1} if µA(b) < k − 1.

Proof. If b = ǫ, the result is obvious.
For b 6= ǫ, let x ∈ αA(b).
If µA(b) = k, by Proposition 4 point 2, bk+1 = k and by Remark 3 we have x = k − 1.
If µA(b) = k − 1 and bk+1 = 0, then asc(xbk+1) = 0, and so µA(xb) = µA(b) = k − 1, and again
by Proposition 4 point 2 we have x = k − 1.
If µA(b) = k − 1 and 0 < bk+1 < k, then there are two possibilities for µA(xb):

• µA(xb) = µA(b) = k − 1, if asc(xbk+1) = 0, and as above x = k − 1;

• µA(xb) = µA(b) − 1 = k − 2, if asc(xbk+1) = 1. In this case x ∈ {0, 1, . . . , bk+1 − 1}.

If µA(b) < k − 1 (and consequently 0 ≤ bk+1 < k), then there are two possibilities for µA(xb):

• µA(xb) = µA(b), if asc(xbk+1) = 0, and we have x ∈ {bk+1, bk+1 + 1, . . . , k − 1};

• µA(xb) = µA(b) − 1, if asc(xbk+1) = 1, and we have x ∈ {0, 1, . . . , bk+1 − 1}.

Proposition 8. Let b = bk+1bk+2 . . . bn be an admissible suffix in An and x ∈ αA(b). Then

µA(xb) =

x if x ≥ µA(b),
µA(b) if bk+1 ≤ x < µA(b),
µA(b) − 1 if x < bk+1.

Proof. If x ≥ µA(b), by Proposition 3 it follows that x ≥ bk+1, and by Proposition 4 point 3,
that µA(xb) = max{x, µA(b)} = x.
If bk+1 ≤ x < µA(b), then, again by Proposition 4 point 3, it follows that µA(xb) = max{x, µA(b)} =
µA(b).
If x < bk+1, then asc(xbk+1) = 1, so µA(xb) = µA(b) − 1.

11

Example 3. Let k = 5, n = 9, and b = b6b7b8b9 = 2050 be an admissible suffix in A9. Clearly,
µA(b), the minimum number of ascents in a prefix s1s2 . . . s5b6 such that s1s2 . . . s5b ∈ A9, is 4.
In this case, denoting s5 by x, we have

• the set αA(b) of all possible values for x is {0, 1, , . . . , bk+1 − 1} ∪ {k − 1} = {0, 1} ∪ {4}.

• µA(xb) = µA(b) − 1 = 4 − 1 = 3, if x ∈ {0, 1}; or µA(xb) = µA(b) = 4, if x = 4.

Proposition 9. Let b = ǫ or b = bk+1bk+2 . . . bn be an admissible suffix in Rn. Then

αR(b) =

{0, 1, . . . , n − 1} if b = ǫ,
{k − 1} if µR(b) = k, or µR(b) = k − 1 and bk+1 < k − 1,
{0, 1, . . . , k − 1} if µR(b) = k − 1 and bk+1 = k − 1, or µR(b) < k − 1.

Proof. If b = ǫ, the result is obvious.
For b 6= ǫ, let x ∈ αR(b).
If µR(b) = k, by Proposition 4 point 2, bk+1 = k and by Remark 3 we have x = k − 1.
If µR(b) = k − 1 and bk+1 < k − 1, then the maximal value of the statistic m (defining the set
Rn) of a length k + 1 prefix ending with bk+1 < k− 1 is k− 1, and it is reached when x = k− 1.
If µR(b) = k − 1 and bk+1 = k − 1, then there are two possibilities for µR(xb):

• µR(xb) = µR(b) = k − 1, and as above, this implies x = k − 1;

• µR(xb) = µR(b) − 1 = k − 2, which implies x ∈ {0, 1, . . . , k − 2}.

Finally, if µR(b) < k − 1, then x can be any value in {0, 1, . . . , k − 1}.

Proposition 10. Let b = bk+1bk+2 . . . bn be an admissible suffix in Rn and x ∈ αR(b). Then

µR(xb) =

x if x ≥ µR(b),
µR(b) if bk+1 ≤ x < µR(b) or x < bk+1 < µR(b),
µR(b) − 1 if x < bk+1 = µR(b).

Proof. The case x ≥ µR(b) is analogous with the similar case in Proposition 8.
The next case is equivalent with x < µR(b) and bk+1 < µR(b), and since Rn corresponds to the
statistic m, the result holds.
Finally, if x < bk+1 = µR(b), then µR(b) = µR(xb) + 1, and so µR(xb) = µR(b) − 1.

Example 4. Let k = 4, n = 7, and b = b5b6b7 = 241 be an admissible suffix in R7. It follows
that bk+1 = 2, µR(b) = 3 and

• αR(b) = {k − 1} = {3};

• µR(xb) = x = 3.

Proposition 11. Let b = ǫ or b = bk+1bk+2 . . . bn be an admissible suffix in Sn. Then

αS(b) =

{0, 1, . . . , n − 1} if b = ǫ,
{k − 1} if bk+1 = k,
{C,C + 1, . . . , k − 1} if 0 ≤ bk+1 ≤ k − 1,

where C = max{0, bk+1 − 1}.

12

Since µS(b) = bk+1, the next result follows:

Proposition 12. Let b = bk+1bk+2 . . . bn be an admissible suffix in Sn and x ∈ αS(b). Then

µS(xb) = x.

Example 5. Let k = 6, n = 9, and b = b7b8b9 = 457 be an admissible suffix in S9. So we have
µS(b) = 4, C = max{0, bk+1 − 1} = max{0, 3} = 3, and

• αS(b) = {C,C + 1, . . . , k − 1} = {3, 4, 5};

• µS(xb) = x, where x ∈ {3, 4, 5}.

4.2 The bound of Hamming distance between successive sequences in the

lists S̃En, Ãn, R̃n, and S̃n

Now we show that the Hamming distance between two successive sequences in the mentioned
lists is bounded from above by a constant, which implies that the lists are Gray codes. These
results are embodied in Theorems 2, 3 and 4.

4.2.1 The list S̃En

Theorem 2. The list S̃En is 1-Gray code.

Proof. The result follows from the fact that the restriction of the 1-Gray code list Gn(n) to any
product space remains a 1-Gray code (see [14]), in particular to the set

Vn = ϑ1 × ϑ2 × . . . × ϑn,

where

• ϑi = {0, 1, ..., n − i}, if n is odd and i is even, or

• ϑi = {i − 1, i, ..., n − 1}, if n is even, or n and i are both odd.

Then by applying to each sequence s in the list Vn the two transforms mentioned before
Definition 2, namely:

• complementing each digit in s if n is even, or only digits in odd positions if n is odd, then

• reversing the obtained sequence,

the desired 1-Gray code for the set SEn in ≺c order is obtained.

4.2.2 The lists Ãn and R̃n

The next proposition describes the pattern of s = last(Ỹn | b) and s = first(Ỹn | b), where Ỹn

is one of the lists Ãn or R̃n.

Proposition 13. Let Yn be one of the sets An or Rn, and b = bk+1bk+2 . . . bn be an admissible
suffix in Yn. If s = last(Ỹn | b) or s = first(Ỹn | b), then s has one of the following patterns:

• s = 012 . . . (k − 2)(k − 1)b, or

13

• s = 012 . . . (k − 2)0b.

Proof. Let s = s1s2 . . . skbk+1bk+2 . . . bn. Since s = last(Ỹn | b) or s = first(Ỹn | b), according to
αY (b) given in Propositions 7 and 9, it follows that sk ∈ {0, k − 1}. In other words, sk is either
the smallest or the largest value in αY (b).
If sk = k − 1, then by Remark 3 we have s = 012 . . . (k − 2)(k − 1)b.
If sk = 0, then considering the definition of ≺c order we have either

• s = first(Ỹn | b) and
∑n

i=k+1
bi + (n − k) is odd, or

• s = last(Ỹn | b) and
∑n

i=k+1
bi + (n − k) is even.

For the first case, again by the definition of ≺c order, it follows that sk−1 must be the largest
value in αY (0b), and so sk−1 = k − 2, and by Remark 3, s = 012 . . . (k − 2)0b. Similarly, the
same result is obtained for the second case.

A direct consequence of the previous proposition is that ≺c order gives a more restrictive
Gray codes than those given by ≺ order for the sets An and Rn. This is formalized in the next
theorem.

Theorem 3. The lists Ãn and R̃n are 2-adjacent Gray codes.

Proof. Let s, t ∈ Yn, with t = s̃uccY (s). If k + 1 is the rightmost position where s and t differ,
then there are admissible suffixes b = bk+1bk+2 . . . bn and b

′ = b′k+1
bk+2 . . . bn in Yn such that

s = last(Ỹn |b) and t = first(Ỹn |b
′).

By Proposition 13, s has pattern

012 . . . (k − 2)(k − 1)b, or
012 . . . (k − 2)0b;

and t has pattern
012 . . . (k − 2)(k − 1)b′, or
012 . . . (k − 2)0b′.

And in any case, s and t differ in position k + 1 and possibly in position k.

4.2.3 The list S̃n

The next proposition gives the pattern of last(S̃n | b) and first(S̃n | b) for an admissible suffix b

in Sn.

Proposition 14. Let b = bk+1bk+2 . . . bn be an admissible suffix in Sn. If s = last(S̃n | b), then
the pattern of s is given by:

• if bk+1 = k or
∑n

i=k+1
bi + (n − k) is odd, then

s = 012 . . . (k − 2)(k − 1)b;

• if bk+1 < k and
∑n

i=k+1
bi + (n − k) is even, and either bk+1 = 0 or bk+1 is odd, then

s = 012 . . . (k − 2)(max{0, bk+1 − 1})b;

14

• if bk+1 < k and
∑n

i=k+1
bi + (n − k) is even, and bk+1 > 0 is even, then

s = 012 . . . (k − 3)(bk+1 − 2)(bk+1 − 1)b.

Similar results hold for s = first(S̃n | b) by replacing ‘odd’ by ‘even’, and vice versa, for the
parity of

∑n
i=k+1

bi + (n − k).

Proof. Let s = s1s2 . . . skbk+1 . . . bn = last(S̃n | b).
If bk+1 = k or

∑n
i=k+1

bi + (n − k) is odd, then sk is the largest value in αS(b), so sk = k − 1,
and by Remark 3, si = i − 1 for 1 ≤ i ≤ k. So the first case holds.
If

∑n
i=k+1

bi + (n − k) is even and bk+1 < k, then sk is the smallest value in αS(b), namely
max{0, bk+1 − 1}, which is even if bk+1 = 0 or bk+1 is odd. Thus, by the definition of ≺c order,
sk−1 is the largest value in αS(skb), which is k − 2, and by Remark 3, the second case holds.
For the last case, as above, sk = max{0, bk+1 − 1}, and considering bk+1 > 0 and even, it follows
that sk = bk+1 − 1 is odd. Thus sk−1 is the minimal value in αS(skb), that is bk+1 − 2, which in
turns is even, and the last case holds.
The proof for the case s = first(S̃n | b) is similar.

Theorem 4. The list S̃n is 3-adjacent Gray codes.

Proof. Let t = s̃uccS(s), and k +1 be the rightmost position where s and t differ. Let us denote
by b the length (n − k) suffix of s and b

′ that of t; so, s = last(b | Sn) and t = first(b′ | Sn). It
follows by Proposition 14, that si = ti = i − 1 for all i ≤ k − 2, and so the other differences
possibly occur in position k and in position k − 1.

Considering all valid combinations for s and t as given in Proposition 14, the proof of the
adjacency is routine, and based on the following: sk 6= tk if and only if sk−1 6= tk−1. It follows
that s and t differ in one position, or three positions which are adjacent.

In addition, the lists Ãn, R̃n, and S̃n, are circular Gray codes. This is a consequence of the
following remarks based on Propositions 13 and 14:

• first(Ỹn) = 012 . . . (n − 2)(n − 1);

• last(Ỹn) = 012 . . . (n − 2)0;

where Ỹn is one of the lists Ãn, R̃n, or S̃n.

4.3 Generating algorithm for S̃En, Ãn, R̃n, and S̃n

Here we explain algorithm Gen2 in Figure 3 which generates suffix partitioned Gray codes
for restricted growth sequences; according to particular instances of the functions called by it,
Gen2 produces the list S̃En, Ãn, R̃n, or S̃n. Actually, for convenience, Gen2 produces length
(n + 1) sequences s = s1s2 . . . sn+1 with sn+1 = 0, and so, neglecting the last value in each
sequence s the desired list is obtained. Notice that with this dummy value for sn+1 we have
µX(sksk+1 . . . sn) = µX(sksk+1 . . . sn0), for k ≤ n, and similarly for αX .

In Gen2, the sequence s is a global variable, and initialized by 01 . . . (n − 1)0, which is the
first length n sequence in ≺c order, followed by a 0; and the main call is Gen2(n + 1, 0, 0, 0).
Procedure Gen2 has the following parameters (the first three of them are similar with those of
procedure Gen1):

15

• k, the position in the sequence s which is updated by the current call;

• x, the value to be assigned to sk;

• dir, gives the direction in which sk−1 covers αX(sksk+1 . . . sn0), the defining set of the
current suffix;

• v, the value of µX(sk+1 . . . sn0).

The functions called by Gen2 are given in Figures 4 and 5. They are principally based on the
evaluation of αX and µX for the current suffix of s, and are:

• Mu X(k, x, v) returns the value of µX(sksk+1 . . . sn0), with x = sk.

• IsDegreeOne X(k) stops the recursive calls when αX(sksk+1 . . . sn0) has only one element,
namely k−2. In this case, by Remark 3 the sequence is uniquely determined by the current
suffix, and this prevents Gen2 to produce degree one calls. In addition, IsDegreeOne X(k)
sets appropriately d−1 values at the left of sk, where d is the upper bound of the Hamming
distance in the list (changes at the left of s1 are considered with no effect). This can be
considered as a Path Elimination Technique or PET (see [16]).

• Lowest X(k) is called when IsDegreeOne X returns false, and gives the lowest value
in αX(sksk+1 . . . sn0).

• SecLargest X(k, u), is called when IsDegreeOne X returns false, and gives the second
largest value in αX(sksk+1 . . . sn0) (the largest value being always k − 2).

By this construction, algorithm Gen2 has no degree one calls and it satisfies the CAT principle.
Figure 6 shows the tree induced by the algorithm when generates Ã4.

procedure Gen2(k, x, dir, v)
global n,s;
sk := x;
u :=Mu X(k, x, v);
if IsDegreeOne X(k, u) then Print s;
else c:=Lowest X(k);

d:=SecLargest X(k, u);
if dir mod 2 = 1 then

for i := c to d do

Gen2(k − 1, i, i, u);
Gen2(k − 1, k − 2, k − 1 − (dir mod 2), u);
if dir mod 2 = 0 then

for i := d downto c do

Gen2(k − 1, i, i + 1, u);
end.

Figure 3: Algorithm Gen2, generating the list X̃ n.

16

function Mu A(m, i,w)
if i ≥ w then return i;
else if i ≥ sm+1

then return w;
else return w − 1;

end.

function IsDegreeOne A(m, v)
if v = m − 1 or

(v = m − 2 and sm = 0)
then sm−1 := m − 2;

return true;
else return false;

end.

function Lowest A(m)
return 0;

end.

function SecLargest A(m,w)
if w = m − 2 and sm > 0

and sm < m − 1
then return sm − 1;
else return m − 3;

end.

function Mu R(m, i,w)
if i ≥ w then return i;
else if sm+1 < w

then return w;
else return w − 1;

end.

function IsDegreeOne R(m, v)
if v = m − 1 or

(v = m − 2 and sm < m − 2)
then sm−1 := m − 2;

return true;
else return false;

end.

function Lowest R(m)
return 0;

end.

function SecLargest R(m,w)
return m − 3;

end.

(a) (b)

Figure 4: Particular functions called by Gen2, generating the lists: (a) Ãn, and (b) R̃n.

17

function Mu S(m, i,w)
return i;

end.

function IsDegreeOne S(m, v)
if sm = m − 1
then sm−1 := m − 2;

sm−2 := m − 3;
return true;

else return false;
end.

function Lowest S(m)
if sm > 1 and sm ≤ m − 2
then return sm − 1;
else return 0;

end.

function SecLargest S(m,w)
return m − 3;

end.

function Mu SE(m, i,w)
if m = n then return n − 1;
else return w − 1;

end.

function IsDegreeOne SE(m, v)
if m = 2 then return true;
else return false;

end.

function Lowest SE(m)
return 0;

end.

function SecLargest SE(m,w)
return m − 3;

end.

(a) (b)

Figure 5: Particular functions called by Gen2, generating the lists: (a) S̃n, and (b) S̃En.

Figure 6: The tree induced by the call Gen2(5, 0, 0, 0), generating the list Ã4.

18

5 Final remarks

We conclude this paper by comparing for each of the sets SEn, An, Rn and Sn the prefix
partitioned Gray codes induced by ≺ order and the suffix partitioned one induced by ≺c order.
This can be done by comparing the Hamming distance between all pairs of successive sequences
either in the worst case or in average.

Table 1 summarizes Theorems 1, 3, and 4, and Proposition 2, and gives the upper bound of
the Hamming distance (that is, the worst case Hamming distance) for the two order relations.
It shows that for the sets SEn and Sn these relations have same performances, and for the sets
An and Rn, ≺c order induces more restrictive Gray codes.

Set ≺ (RGC) ≺c (Co-RGC)
order order

SEn 1 1
An 3 2
Rn 3 2
Sn 3 3

Table 1: The bound of the Hamming distance between two successive sequences in ≺ and ≺c

orders.

For a list L of sequences, the average Hamming distance is defined as

∑
d(s, t)

N − 1
,

where the summation is taken over all s in L, except its last element, t is the successor of s in
L, d is the Hamming distance, and N the number of sequences in L.

Surprisingly, despite ≺c order has same or better performances in terms of worst case
Hamming distance, if we consider the average Hamming distance, numerical evidences show
that ≺ order is ‘more optimal’ than ≺c order on An, Rn (n ≥ 5), and Sn (n ≥ 6). And this
phenomenon strengthens for large n; see Table 2.

n
≺ (RGC) order ≺c (Co-RGC) order

SEn An Rn Sn S̃En Ãn R̃n S̃n

4 1 1.21 1.21 1.31 1 1.14 1.14 1.15
5 1 1.13 1.12 1.29 1 1.19 1.18 1.24
6 1 1.09 1.07 1.27 1 1.23 1.20 1.31
7 1 1.06 1.06 1.26 1 1.25 1.22 1.35
8 1 1.04 1.04 1.25 1 1.26 1.23 1.37
9 1 1.03 1.03 1.24 1 1.28 1.24 1.39
10 1 1.02 1.03 1.23 1 1.28 1.24 1.41

Table 2: The average Hamming distance for ≺ order and ≺c order.

Algorithmically, ≺c order has the advantage that its corresponding generating algorithm,
Gen2, is more appropriate to be parallelized than its ≺ order counterpart, Gen1. Indeed,
the main call of Gen2 produces n recursive calls (compare to two recursive calls produced by

19

the main call of Gen1), and so we can have more parallelized computations; and this is more
suitable for large n. See Figure 2 and 6 for examples of computational trees.

Finally, it will be of interest to explore order relation based Gray codes for restricted growth
sequences defined by statistics other than those considered in this paper. In this vein we suggest
the following conjecture, checked by computer for n ≤ 10, and concerning descent sequences
(defined similarly with ascent sequences in Section 2).

Conjecture 1. The set of length n descent sequences listed in ≺c order is a 4-adjacent Gray
code.

20

Appendix

Sequence S5 R5 A5

00000 X X X

00001 X X X

00012 X X X

00011 X X X

00010 X X X

00123 X X X

00122 X X X

00121 X X X

00120 X X X

00110 X X X

00111 X X X

00112 X X X

00102 X X

00101 X X X

00100 X X X

01230 X X X

01231 X X X

01232 X X X

Sequence S5 R5 A5

01233 X X X

01234 X X X

01223 X X X

01222 X X X

01221 X X X

01220 X X X

01210 X X X

01211 X X X

01212 X X X

01213 X X

01203 X X

01202 X X

01201 X X X

01200 X X X

01100 X X X

01101 X X X

01102 X X

01112 X X X

Sequence S5 R5 A5

01111 X X X

01110 X X X

01120 X X X

01121 X X X

01122 X X X

01123 X X X

01023 X X

01022 X X

01021 X X

01020 X X

01010 X X X

01011 X X X

01012 X X X

01013 X

01002 X X

01001 X X X

01000 X X X

Table 3: The sets S5, R5, and A5 listed in ≺ order.

Sequence S5 R5 A5

01234 X X X

01233 X X X

01023 X X

00123 X X X

01123 X X X

01223 X X X

01213 X X

01013 X

01203 X X

01202 X X

01102 X X

00102 X X

01002 X X

01012 X X X

00012 X X X

00112 X X X

01112 X X X

01212 X X X

Sequence S5 R5 A5

01222 X X X

01122 X X X

00122 X X X

01022 X X

01232 X X X

01231 X X X

01021 X X

00121 X X X

01121 X X X

01221 X X X

01211 X X X

01111 X X X

00111 X X X

00011 X X X

01011 X X X

01001 X X X

00001 X X X

00101 X X X

Sequence S5 R5 A5

01101 X X X

01201 X X X

01200 X X X

01100 X X X

00100 X X X

00000 X X X

01000 X X X

01010 X X X

00010 X X X

00110 X X X

01110 X X X

01210 X X X

01220 X X X

01120 X X X

00120 X X X

01020 X X

01230 X X X

Table 4: The sets S5, R5, and A5 listed in ≺c order.

21

References

[1] Gray, F. (1953) Pulse Code Communication. U.S. Patent 2632058.

[2] Er, M.C. (1984) On generating the N -ary reflected Gray code. IEEE Transactions on
Computers, 33, 739–741.

[3] Li, Y., Sawada, J. (2009) Gray codes for reflectable languages. Information Processing
Letters, 5, 296–300.

[4] Walsh, T. (2003) Generating Gray codes in O(1) worst-case time per word. 4th Discrete
Mathematics and Theoretical Computer Science Conference, Dijon, France, 7-12 July, pp.
71–88. Springer-Verlag, Berlin.

[5] Bernini, A., Grazzini, E., Pergola, E. and Pinzani, R. (2007) A general exhaustive generation
algorithm for Gray structures. Acta Informatica, 44, 361–376.

[6] Ruskey, F. and Williams, A. (2009) The coolest way to generate combinations. Discrete
Mathematics, 309, 5305–5320.

[7] Ruskey, F., Sawada, J. and Williams, A. (2012) Binary bubble languages. Journal of
Combinatorial Theory Series A, 119, 155–169.

[8] Klingsberg, P. (1981) A Gray code for compositions. Journal of Algorithms, 3, 41–44.

[9] Walsh, T. (2000) Loop-free sequencing of bounded integer compositions. Journal of
Combinatorial Mathematics and Combinatorial Computing, 33, 323–345.

[10] Vajnovszki, V. (2001) A loopless generation of bitstrings without p consecutive ones.
Proceedings of the Third International Conference on Combinatorics, Computability and
Logic, (DMTCS ’01), Constanta, Romania, 2-6 July, pp. 227–240. Springer-Verlag, London.

[11] Baril, J.-L. and Vajnovszki, V. (2005) Minimal change list for Lucas strings and some graph
theoretic consequences. Theoretical Computer Science, 346, 189–199.

[12] Vajnovszki, V. (2007) Gray code order for Lyndon words. Discrete Mathematics and
Theoretical Computer Science, 9, 145–152.

[13] Vajnovszki, V. (2008) More restrictive Gray codes for necklaces and Lyndon words.
Information Processing Letters, 106, 96–99.

[14] Vajnovszki, V. and Vernay, R. (2011) Restricted compositions and permutations: from old
to new Gray codes. Information Processing Letters, 111, 650–655.

[15] Ruskey, F., Savage, C. (1994) Gray codes for set partitions and restricted growth tails.
Australasian Journal of Combinatorics, 10, 85–96.

[16] Ruskey, F. Combinatorial Generation. Book in preparation.

[17] Mansour, T. and Vajnovszki, V. (2013) Efficient generation of restricted growth words.
Information Processing Letters, 113, 613–616.

22

[18] Bousquet-Mélou, M., Claesson, A., Dukes, M. and Kitaev, S. (2010) (2 + 2)-free posets,
ascent sequences and pattern avoiding permutations. Journal of Combinatorial Theory
Series A, 7, 884–909.

[19] Dukes, M. and Parviainen R. (2010) Ascent Sequences and Upper Triangular Matrices
Containing Non-Negative Integers. Electronic Journal of Combinatorics, 17, R53.

[20] Duncan, P. and Steingŕımsson E. (2011) Pattern Avoidance in Ascent Sequences. Electronic
Journal of Combinatorics, 18, P226.

[21] Chen, W.Y.V., Dai, A.Y.L., Dokos, T., Dwyer, T. and Sagan, B.E. (2013) On 021-Avoiding
Ascent Sequences. Electronic Journal of Combinatorics, 20, P76.

[22] Mansour, M. and Shattuck, M. (2014) Some enumerative results related to ascent sequences.
Discrete Mathematics, 315-316, 29–41.

[23] Kitaev, S. (2011) Patterns in Permutations and Words, Springer-Verlag, Berlin.

[24] Stanley, R.P. (1999) Enumerative Combinatorics Vol. 2. Cambridge University Press, New
York.

[25] van Baronaigien, D.R. and Ruskey, F. (1993) Efficient generation of subsets with a given
sum. Journal of Combinatorial Mathematics and Combinatorial Computing, 14, 87–96.

23

