
A Loopless Generation of Bitstrings without p

consecutive ones

Vincent Vajnovszki

LE2I – CNRS FRE 2309, Université de Bourgogne
B.P. 47 870 21078 DIJON-Cedex France

e-mail: vvajnov@u-bourgogne.fr

Abstract

Let F
(p)
n be the set of all n-length bitstrings such that there are no p consecutive

1s. F
(p)
n is counted with the pth order Fibonacci numbers and it may be regarded

as the subsets of {1, 2, ..., n} without p consecutive elements and bitstrings in

F
(p)
n code a particular class of trees or compositions of an integer. In this paper

we give a Gray code for F
(p)
n which can be implemented in a recursive generating

algorithm, and finally in a loopless generating algorithm.
Key words: bitstrings, Fibonacci numbers, loopless generating algorithm, com-
binatorial Gray codes, subsets with a given restriction.

1 Introduction and motivation

In [6] Ehrlich formalized the notion of a loopless (or loop-free) generating algo-
rithm where, after the initial sequence is generated, each succeeding sequence
must be generated by at most a fixed number of operations, independent of the
length of the generated sequences. A constant delay between outputs is partic-
ularly desirable in applications where the output of one computation serves as
input to another.

There are many interesting loopless algorithms for generating combinatorial
objects, for example: permutations and multiset permutations [5, 6, 15]; combina-
tions [4, 6]; subsets [1]; integer partitions [7, 22]; trees [14, 16–18, 20, 24, 30]; well-
formed parenthesis strings [21, 29, 31, 34]; and linear extensions of a poset [3].

In this paper we adopt a classic approach in order to obtain a loopless gener-

ating algorithm for the set F
(p)
n of all n-length bitstrings without p consecutive

1s: we determine a Gray code for F
(p)
n which can be implemented in an efficient

recursive generating algorithm, then we demonstrate some ‘regularities’ in this
Gray code which permit us to construct the loopless algorithm.

Unlike the Squire’s Gray codes for A-free strings [28] (strings avoiding a
fixed pattern) our Gray code lists strings in graylex order [4] (a generalization
of lexicographic order). Also, in [33] Walsh presents a very general technique for
producing loopless algorithms for Gray code lists satisfying: (1) all the strings
with a given prefix form an interval of consecutive strings in the list (the list
is prefix partitioned), and (2) not all the strings with the same first i letters
have the same i + 1st letter. Our Gray code satisfies the first but not the last



2 Vincent Vajnovszki

criteria, so our loopless generating algorithm is based on intrinsic combinatorial
properties of generated objects.

Our motivation is two-fold: we add a new object to the catalogue of ele-
mentary combinatorial objects that can be generated by a loopless algorithm,
and in contrast to the ‘existential’ approach of [19] we prove constructively that
Fibonacci cubes contain Hamiltonian paths. Moreover, recently novel intercon-

nection topologies are defined based on Gray codes on F
(p)
n [11, 36] in reason of

interesting values of their diameter, edge and node connectivity.

2 Preliminaries

In this section we define the main notions which occur through this paper: Gray
code, operations over lists, binary Gray codes, order relations over bitstring sets
and Fibonacci set.

A list L for a string set L is an ordered list of the elements of L. If the ele-
ments of L are in order such that the Hamming distance between two successive
elements (i. e., the number of positions in which they differ) is bounded by a
constant, then the list is called a Gray code list. For example, the Hamming
distance between two successive bitstrings in the binary reflected Gray code list
(see relation (1) below) is one and this distance is two in the Gray code list
for the bitstrings which represent well-formed parenthesis strings [26, 34]. In the
followings we adopt the definitions below.

• first(L) is the first element in the list and last(L) the last element on the
list;

• L is the list obtained by reversing L, e. g., if L = l1, l2, ..., ln−1, ln, then
L = ln, ln−1, . . . , l2, l1, and first(L) = last

(
L

)
and first

(
L

)
= last(L);

• if α is an integer or a string, then αn is the string which consists of n copies
of α; and α ·L is the list obtained by concatening α to each string of L, e. g.,
if L = 01, 00, 10 and α = 10, then α · L = 1001, 1000, 1010;

• if L′ is a list, then L ◦ L′ is the concatenation of the two lists, e. g., if
L = 010, 000, 001 and L′ = 101, 100, then L ◦ L′ = 010, 000, 001, 101, 100.

For the set Bn of all n-length bitstrings the binary reflected Gray code
(BRGC for short) due to Frank Gray in 1953 [10] is defined by

Bn =

{
λ if n = 0,

0 · Bn−1 ◦ 1 · Bn−1 if n > 0
(1)

where λ is the empty word, and the list Bn has first(Bn) = 0n and last(Bn) =
10n−1.

The order in a list L may correspond to a natural order on the set of the
elements of L. For example, the order in the BRGC list is the grl-order (see the
definition below), and the order in the binary tree integer sequences list is the
lexicographic one [24].



A Loopless Generation of Bitstrings without p consecutive ones 3

Now you define two order relations on Bn denoted by ≺g and ≺l, called
global reflected-lexicographical order (grl-order for short), and local reflected-
lexicographical order (lrl-order for short) respectively, and both are particular
cases of graylex order [4]. The former is more natural than the latter and in

Section 4 we give an lrl-ordered Gray code list for F
(p)
n . Notice that the grl-order

is not a Gray code order for F
(p)
n .

Definition 1. Let b = b1b2 · · · bn and b′ = b′1b
′
2 · · · b

′
n be bitstrings in Bn and i,

1 ≤ i ≤ n, an index such that bi 6= b′i but bj = b′j for 1 ≤ j < i. Then

1. b ≺g b′ if and only if either

(a)
∑i−1

j=1 bj is even and bi < b′i, or

(b)
∑i−1

j=1 bj is odd and bi > b′i,

2. b ≺l b′ if and only if either

(a) (i − 1) +
∑i−1

j=1 bj is even and bi < b′i, or

(b) (i − 1) +
∑i−1

j=1 bj is odd and bi > b′i.

We may construct a Gray code list for Bn with the bitstrings listed in lrl-
order and not in grl-order as that given by the definition (1). Its definition is
similar to (1), but we reverse the first list and not the last one

Cn =

{
λ if n = 0,

0 · Cn−1 ◦ 1 · Cn−1 if n > 0.
(2)

Here first(Cn) = 01n−1 and last(Cn) = 1n, and Cn may be obtained from Bn

by replacing in Bn all zero bits in each string by a one bit and vice-versa, then
reversing the obtained list.

Alternatively, we may define a Gray code list in terms of a Hamiltonian
path over a set of strings. Let S be a string set, k > 0 an integer, and G(S)
be the graph with vertex set S, and edges connecting those vertices for which
the Hamming distance is bounded by k. Finding a Gray code list L for S is
equivalent to finding a Hamiltonian path in G(S), and L lists the strings in S

along this Hamiltonian path.

3 Fibonacci strings

Let F
(p)
n be the set of all n-length bitstrings such that there are no p consecutive

1s, with p ≥ 2. F
(p)
n is called the pth order nth Fibonacci set, and the elements

in F
(p)
n are the pth order n-length Fibonacci strings. The set F

(p)
n is defined

recursively by

F (p)
n =







{λ} if n = 0,

{0, 1}n if 1 ≤ n < p,

0 · F
(p)
n−1 ∪ 10 · F

(p)
n−2 ∪ · · · ∪ 1p−10 · F

(p)
n−p if n ≥ p

(3)



4 Vincent Vajnovszki

and [13, p. 287]

card(F (p)
n ) = f

(p)
n+p (4)

where f
(p)
n is the pth order nth Fibonacci numbers defined by [13, p. 269]

f (p)
n =







0 if 0 ≤ n < p − 1,

1 if n = p − 1,
∑n−1

j=n−p f
(p)
j if n ≥ p,

(5)

and the generating function for the sequence {f
(p)
n }n≥0 is

∑

n≥0

f (p)
n zn =

zp−1

1 − z1 − z2 − . . . − zp
=

zp−1 − zp

1 − 2z + zp+1
.

When p = 2 relation (5) gives the usual Fibonacci numbers, and f
(3)
n and f

(4)
n

are called Tribonacci and Tetranacci numbers respectively [27, pp. 406, 423]. See

Table 1 for the set F
(2)
5 . It is easy to generate the Fibonacci set in lexicographical

order, see [23] for an iterative constant amortized time generating algorithm for

F
(2)
n .

A bitstring in F
(p)
n , p ≥ 2, may be regarded as a subset of [n] = {1, 2, . . . , n}

without p consecutive elements using the customary convention: an element is
within the subset if and only if the bit in the Fibonacci string with its index

is one. See [9, pp. 292 and 321] for two combinatorial interpretations of F
(2)
n or

Appendix 2 for F
(p)
n , p ≥ 2.

4 Gray code for Fibonacci strings

Let F
(p)
n be the bitstring list defined by

F (p)
n =

{

Cn if 0 ≤ n < p,

0 · F
(p)

n−1 ◦ 10 · F
(p)

n−2 ◦ · · · ◦ 1p−10 · F
(p)

n−p if n ≥ p,
(6)

with Cn defined by relation (2). This is the expression in terms of list of relation

(3) and it is not difficult to prove that F
(p)
n is a Gray code list for F

(p)
n with

the Hamming distance between two consecutive elements equal to one, and F
(p)
n

lists the elements of F
(p)
n in lrl-order. Remark that the list of F

(p)
n in grl-order is

not a Gray code; an example with small value of n proofs it. In terms of subsets,

F
(p)
n lists the subsets of [n] without p consecutive elements such that successive

subsets differ by the deletion of an old element or the addition of a new one. See

Table 1 and 2 for the lists F
(2)
5 and F

(3)
4 , and their associated subsets.

Let χ(p) be the (p+1)-length bitstring 1p−100, and for 0 ≤ j ≤ p+1, χ
(p)
j be

its j-length prefix, i. e., χ
(p)
0 = λ, χ

(p)
1 = 1, χ

(p)
2 = 11, . . . , χ

(p)
p+1 = 1p−100. The

basic properties of the list F
(p)
n are embodied in the following Lemma.



A Loopless Generation of Bitstrings without p consecutive ones 5

Lemma 2. 1. first
(

F
(p)
n

)

= 0
(
χ(p)

)⌊n−1
p+1 ⌋

χ
(p)
(n−1) mod (p+1),

2. last
(

F
(p)
n

)

=
(
χ(p)

)⌊n−1
p+1 ⌋

χ
(p)
(n−1) mod (p+1)+1, with ⌊x⌋ the largest integer

smaller then x,

3. Two successive bitstrings in F
(p)
n differ in exactly one position,

4. F
(p)
n lists the elements of F

(p)
n in lrl-order. 2

An alternative way to define recursively the list F
(p)
n is

F (p)
n =







λ if n = 0,

0, 1 if n = 1,

0 · F
(p)

n−1 ◦ 10 · F
(p)

n−2 ◦ · · · ◦ 1p−10 · F
(p)

n−p if n > 1,

(7)

with the following conventions for negative values of n: (1) α·F
(p)
−1 is the singleton

list formed by the string α after the deletion of its last item, and (2) α · F
(p)
n is

the empty list if n < −1.
The following recursive generating procedure is the algorithmic expression of

relation (7). The array b, n and the order p > 1 are global variables, and the
main call is fib(n, up). For a simpler expression of the algorithm we admit that
the fib procedure could write in the string b even after the index n, and the call
of fib with values of n less then minus one has not any effect. A Java applet

generating F
(p)
n is available at my web site [32].

procedure fib(k, dir)
if k = 0 or k = −1
then PrintString;
else if k = 1

then if dir = up

then b[n] := 0; PrintString;
b[n] := 1; PrintString;

else b[n] := 1; PrintString;
b[n] := 0; PrintString;

endif

else if k > 1
then if dir = up

then for j := 0 to p − 1 do

for u := 1 to min(j, k) do

b[n − k + u] := 1;
enddo

b[n − k + j + 1] := 0;
fib(k − j − 1, down);

enddo

else for j := p − 1 downto 0 do

for u := 1 to min(j, k) do

b[n − k + u] := 1;



6 Vincent Vajnovszki

enddo

b[n − k + j + 1] := 0;
fib(k − j − 1, up);

enddo

endif

endif

endif

endif

In the algorithm above each call of the generating procedure requires p re-
cursive calls, thus a priori it has O(p) time complexity which is not constant
amortized time, unless p is a constant; an experimental study comfort this hy-
pothesis. This algorithm lies on relation (7) and may be transformed in a constant
amortized time by a simple transform of this relation as given below.

The case n > 1 in (7) may be expressed as

F (p)
n = 0 · F

(p)

n−1 ◦ 10 · F
(p)

n−2 ◦ · · · ◦ 1p−10 · F
(p)

n−p

= 0 · F
(p)

n−1 ◦ 1 ·









0 · F
(p)

n−2 ◦ · · · ◦ 1 ·
(

0 · F
(p)

n−p−1 ◦ 10 · F
(p)

n−p

)

︸ ︷︷ ︸

E
(p)
n,2









︸ ︷︷ ︸

E
(p)
n,p−1

= E(p)
n,p,

where E
(p)
n,k is defined recursively by

E
(p)
n,k =

{

0 · F
(p)

n−p−1 ◦ 10 · F
(p)

n−p if k = 2,

0 · F
(p)

n−p−1+k ◦ 1 · E
(p)
n,k−1 if 2 < k ≤ p,

(8)

and with relation (7) we have

E
(p)
n,k =







λ if n = 0 and k = p,

0, 1 if n = 1 and k = p,

0 · E
(p)

n−p−1,p ◦ 10 · E
(p)

n−p,p if n > 1 and k = 2,

0 · E
(p)

n−p−1+k,p ◦ 1 · E
(p)
n,k−1 if n > 1 and 2 < k ≤ p,

(9)

and F
(p)
n = E

(p)
n,p. In other words, E

(p)
n,k, k ≤ p, is the (n−p+k)-length bitstring list

obtained from F
(p)
n after the deletion of the prefix 1p−k in all bitstring belonging

in F
(p)
n with this prefix.

Procedure fib e below is the implementation of relation (9); in this case the
recursive generating procedure has no loops and it has a constant amortized time.



A Loopless Generation of Bitstrings without p consecutive ones 7

Indeed, it satisfies the Ruskey and van Baronaigien’s [25] ‘CAT’ (like Constant
Amortized Time) principle listed below.

1. Every call results in the output of at least one object,
2. Excluding the computation done by recursive calls, the amount of computa-

tion of any call is proportional to the degree of a call,
3. The number of calls of degree one is linear in the number of generated objects,

where the degree of a call is the number of immediate recursive calls initiated by

the current call. The call fib e(n, p, up) produces the list F
(p)
n = E

(p)
n,p and, as in

the case of the procedure fib, variables n, p and b are global.

procedure fib e(j, k, dir)
if j ≤ 0
thenPrintString;
else if j = 1

then if dir = up

then b[n] := 0; PrintString;
b[n] := 1; PrintString;

else b[n] := 1; PrintString;
b[n] := 0; PrintString;

endif

else if k = 2
then if dir = up

then b[n − j + 1] := 0; fib e(j − 1, p, down);
b[n − j + 1] := 1; b[n − j + 2] := 0; fib e(j − 2, p, down);

else b[n − j + 1] := 1; b[n − j + 2] := 0; fib e(j − 2, p, up);
b[n − j + 1] := 0; fib e(j − 1, p, up);

endif

else if dir = up

then b[n − j + 1] := 0; fib e(j − 1, p, down);
b[n − j + 1] := 1; fib e(j − 1, k − 1, up);

else b[n − j + 1] := 1; fib e(j − 1, k − 1, down);
b[n − j + 1] := 0; fib e(j − 1, p, up);

endif

endif

endif

endif

end.

5 Loopless generating algorithm for F (p)
n

In order to make the recursive generating algorithm loopless we need additional

information about the generated bitstrings. In a bitstring b in F
(p)
n we say that a

one bit bi is free if either (i) i = n, or (ii) i = n− 1 and bn = 0, or (iii) i < n− 1,
bi+1 = 0 and bi+2 = 1; a zero bit bi is free if its right neighbor – if it exists –



8 Vincent Vajnovszki

is zero and if i > 1 then bi−1 is not the rightmost one bit in a contiguous 1s
sequence of length p − 1. In Tables 1.a and 1.b free bits in bitstrings belonging

to F
(2)
5 and F

(3)
4 , respectively, are in bold-face. Note that bitstrings first(F

(p)
n )

and last(F
(p)
n ) have only one free bit and any other bitstring in F

(p)
n has at least

two free bits.

Table 1. The bitstrings in F(2)
5 and F(2)

5 in lrl-order and their corresponding subsets.
Free bits are in bold-face and changed bits – the last or the last-but-one free bits – are
underlined.

(a) The list F(2)
5

rank in lrl-order bitstring subset

1 0 1 0 0 1 {2,5}
2 0 1 0 0 0 {2}
3 0 1 0 1 0 {2,4}
4 0 0 0 1 0 {4}
5 0 0 0 0 0 ∅
6 0 0 0 0 1 {5}
7 0 0 1 0 1 {3,5}
8 0 0 1 0 0 {3}
9 1 0 1 0 0 {1,3}
10 1 0 1 0 1 {1,3,5}
11 1 0 0 0 1 {1,5}
12 1 0 0 0 0 {1}
13 1 0 0 1 0 {1,4}

(b) The list F(3)
4

rank in lrl-order bitstrings subset precedence array

1 0 1 1 0 {2,3} 0120
2 0 1 0 0 {2} 0100
3 0 1 0 1 {2,4} 0101
4 0 0 0 1 {4} 0001
5 0 0 0 0 ∅ 0000
6 0 0 1 0 {3} 0010
7 0 0 1 1 {3,4} 0012
8 1 0 1 1 {1,3,4} 1012
9 1 0 1 0 {1,3} 1010
10 1 0 0 0 {1} 1000
11 1 0 0 1 {1,4} 1001
12 1 1 0 1 {1,2,4} 1201
13 1 1 0 0 {1,2} 1200

Lemma 3 below yields a loopless generating algorithm. Let H
(p)
n be the graph

with vertex set F
(p)
n , with first(F

(p)
n ) and last(F

(p)
n ) connected to the bitstrings



A Loopless Generation of Bitstrings without p consecutive ones 9

obtained by changing their only free bits, and any other bitstring b connected
to two bitstrings – one obtained by changing the last free bit and the other by
changing the last-but-one free bit in b.

Lemma 3. Let G(F
(p)
n ) be the graph with vertex set F

(p)
n , and edges connecting

those vertices with Hamming distance equal to one (i. e., they differ in a single

position). Then H
(p)
n is a Hamiltonian path in G(F

(p)
n ) and the list F

(p)
n defined

by (6) is obtained covering the path H
(p)
n .2

The following loopless algorithm is a direct implementation of Lemma 3 and

computes the successor of a bitstring b in the list F
(p)
n . It employs the n-length

arrays pa and stack. Array pa is called a precedence array and pa[i] is the length
of the contiguous sequence of 1s ending in position i if b[i] = 1, and 0 otherwise;
array stack stores, in increasing order, the indices of the free bits in b. Integer
top is the number of free bits in b and ch is the index of the bit in b which will be
changed in order to obtain the next pth order Fibonacci string. Before the first

call of next, b is initialized with first(F
(p)
n ) (see Lemma 1); pa, its precedence

array, according to pa[i] = 0 if b[i] = 0, and pa[i] = pa[i − 1] + 1 if b[i] = 1 and
i > 1; and initially ch = n − 1 if n is a multiple of p + 1 and ch = n otherwise,
stack[1] = ch, and top = 1. After the initialization step the call of next, until

top = 1, gives the list F
(p)
n with no loop statement between successive bitstrings.

procedure next

b[ch] := 1 − b[ch];
update top and arrays stack and pa;
if top 6= 1
then if ch = stack[top]

then ch := stack[top − 1];
else ch := stack[top];
endif

endif

end.

The difficulties hold in the update of the array stack, the list in increasing
order of the free bits in b. The change of the bit index ch may induce the change
of the status (becomes a free bit if it is not a one, or vice-versa) of bits index

ch−2, ch−1 and ch+1. For example, to transform the first bitstring in F
(2)
5 into

its successor, bit index 4 becomes free (see Table 1); or to transform bitstring
of rank 12, bits index 3 and 5 become not-free. In this case, the indices of the
new free bits are pushed (in increasing order) in stack and the indices of the bits
which are not more free are popped out of stack. This is possible with no loop
statement since ch is the last or the last-but-one element in stack.

For p = 2 this algorithm generates the list F
(2)
n . In this case the array pa is

not required since pa[i] = b[i] for all 1 ≤ i ≤ n, and the algorithm can therefore
be expressed in a simpler form, given in the Appendix 1.



10 Vincent Vajnovszki

6 Conclusions

We have presented a Gray code for the set of all n-length bitstrings without p

successive ones, and efficient algorithms for generating these bitstrings. The algo-
rithms are constant amortized time (constant on average) or loopless (constant
in the worst case). These results add a new object to the list of combinatorial
objects which may be efficiently generated and provide insight into the combi-
natorics of bitstrings with a given restriction.

This paper also shows how, for a given set, a counting recursive relation
can be derived in a Gray code definition and easily expressed in a recursive
generating algorithm and finally in a loopless generating algorithm.

Appendix 1

Procedure next which computes the successor of a bitstring b in the list Fn = F2
n.

For a simpler expression of the algorithm we consider that b[0] = 0.

procedure next

if b[ch] = 1
then v := ch − 1; b[ch] := 0
else v := ch − 2; b[ch] := 1
endif

if ch ≥ 2
then if b[ch − 2] 6= b[ch]

then {ch − 1 or ch − 2 is popped out of stack}
if ch 6= stack[top]
then stack[top − 2] := ch;
endif

stack[top − 1] := stack[top]; top := top − 1;
else {ch − 1 or ch − 2 is pushed in stack}

top := top + 1; stack[top] := stack[top − 1];
if ch = stack[top − 1]
then stack[top − 1] := v

else stack[top − 1] := ch; stack[top − 2] := v;
endif

endif

endif

if ch = n − 1
then if b[ch] = 0

then {n is pushed in stack}
top := top + 1; stack[top] := n;

else {n is popped out of stack}
top := top − 1;

endif

endif



A Loopless Generation of Bitstrings without p consecutive ones 11

if top 6= 1
then if ch = stack[top]

then ch := stack[top − 1];
else ch := stack[top];
endif

endif

end.

Appendix 2

Geometrical interpretation

A (p, r)–tree, 1 < p < r, is a tree with p levels and r nodes and all branches
reaching to the level furthest from the root. The set of all (p, r)–trees is in

a one-to-one correspondence with the bitstring set F
(p−1)
r−(p+1), and we show it

constructively. Let T be a (p, r)–tree, 1 < p < r. We label nodes which have
right sibling by 0 and all others by 1. Reading in post-order (recursively the
subtrees left to right, then the root) the labels we obtain a r-length bitstring;
since its p+1-length suffix is always 01p we denote it by α01p and α is a Fibonacci

string in F
(p−1)
r−(p+1). Conversely, all bitstring in F

(p−1)
r−(p+1) represents a unique (p, r)–

tree. See Figure 1 for the seven (4,8)-trees and the Fibonacci bitstrings in F
(3)
3

associated with them. In this context, adding a i-length branch on the left side
of a (p, r)–tree, i < p, corresponds to appending the prefix 1i−10 to the bitstring
which represents the tree.

Fig. 1. The seven (4, 8)-trees and they bitstring representation.10 1 00 1 0 0 0 0 0 1
011 010 000 00101 1 01 0 011

101 100 110



12 Vincent Vajnovszki

Combinatorial interpretation

Let I
(p)
n be the set of compositions of the integer n whose parts are only allowed

to be taken from {1, 2, . . . , p} [8, pp. 15]. A composition in I
(p)
n is an integer

sequence n1n2 . . . nk with
∑k

i=1 ni = n and 1 ≤ ni ≤ p, for 1 ≤ i ≤ k. The
transformation

n1n2 . . . nk ; 1n1−101n2−10 . . . 1nk−1

is a one-to-one correspondence between I
(p)
n and F

(p)
n−1.

Table 2. The set I(3)
4 of compositions of 4 with parts from {1, 2, 3}.

unlabeled balls
into labeled boxes sequence bitstringr rrr 13 011r rr r 121 010r r r r 1111 000r r rr 112 001rr rr 22 101rr r r 211 100rrr r 31 110

References

1. J.R. Bitner, G. Ehrlich and E.M. Reingold, Efficient generation of the binary
reflected Gray code and its applications, Commun. ACM 19 (1976), 517–521.

2. G. Brightwell and P. Winkler, Counting linear extensions, Order 8 (1991),
225–242.

3. E.R. Canfield and S.G. Williamson, A loop-free algorithm for generating linear
extensions of poset, Order 12 (1995), 57–75.

4. P.J. Chase, Combination generation and Graylex ordering, Congr. Numer. 69

(1989), 215–242.

5. N. Dershowitz, A simplified loop-free algorithm for generating permutations,
BIT 15 (1975), 158–164.

6. G. Ehrlich, Loopless algorithms for generating permutations, combinations, and
other combinatorial objects, J. ACM 20 (1973), 500–513.

7. T.I. Fenner and G. Loizou, A binary tree representation and related algorithms
for generating integer partitions, Comput. J. 23 (1980), 332–337.



A Loopless Generation of Bitstrings without p consecutive ones 13

8. P. Flajolet and R. Sedgewick, Counting and Generating Functions,
Res. Rep. no. 1888, INRIA, 1993. http://pauillac.inria.fr/algo/flajolet/

Publications/books.html

9. R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Second
Edition, Reading, Massachusetts: Addison-Wesley, 1994.

10. F. Gray, Pulse Code Communication, U. S. Patent 2632058 (1953).
11. W-J. Hsu, Fibonacci cubes – a new interconnection topology, IEEE Transactions

on Parallel and Distributed Systems 4(1) (1993), 3–12.
12. J.T. Joichi, D.E. White and S.G. Williamson, Combinatorial Gray codes,

SIAM J. Comput. 9(1) (1980), 130–141.
13. D.E. Knuth, The Art of Computer Programming. Vol. 3 Sorting and Searching,

Addison-Wesley, 1966.
14. J.F. Korsh, Loopless generation of k-ary tree sequences, Information Processing

Letters 52 (1994), 243–147.
15. J.F. Korsh and S. Lipschutz, Generating multiset permutations in constant

time, J. Algorithms 25 (1997), 321–335.
16. J.F. Korsh and S. Lipschutz, Shifts and loopless generation of k-ary trees,

Information Processing Letters 65(5) (1998), 235–240.
17. J.F. Korsh and P. LaFollette, Loopless generation of Gray codes for k-ary

trees, Information Processing Letters 70(1) (1999), 7–11.
18. J.F. Korsh and P. LaFollette, Multiset permutations and loopless generation

of ordered trees with specified degree sequences, J. Algorithms 34(2) (2000), 309–
336.

19. J. Liu, W-J. Hsu and M.J. Chung, Generalized Fibonacci cubes are mostly
Hamiltonian, Journal of Graph Theory 18(8) (1994), 817–829.

20. J.M. Lucas, D. Roelants van Baronaigien and F. Ruskey, On rotations and
the generation of binary trees, J. Algorithms 15(1993), 343–366.

21. K. Mikawa and T. Takaoka, Generation of parenthesis strings by transpositions,
in Proc. CATS’97, Sydney, Australia, February 3–4, 1997.

22. A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms, Academic Press, 1975.
23. J.M. Pallo, On the listing and random generation of hybrid binary trees, Intern.

J. Comput. Math. 50 (1994), 135–145.
24. D. Roelants van Baronaigien, A loopless algorithm for generating binary tree

sequences, Information Processing Letters 39 (1991), 189–194.
25. D. Roelants van Baronaigien and F. Ruskey, Efficient generation of subsets

with a given sum, JCMCC 14 (1993), 87–96.
26. F. Ruskey and A. Proskurowski, Generating binary trees by transpositions, J.

Algorithms 11 (1990), 68–84.
27. N.J.A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973.
28. M. Squire, Gray codes for A-free strings, Electronic J. Combinatorics, 3(1996),

paper R17.
29. V. Vajnovszki, Loopless generation of well-formed parenthesis strings, Research

Report Department IEM, University of Burgundy, September 1997.
30. V. Vajnovszki, On the loopless generation of binary tree sequences, Information

Processing Letters 68(1998) 113–117.
31. V. Vajnovszki, Generating a Gray Code for P-sequences, to appear in Interna-

tional Journal of Mathematical Algorithms.
32. http://www.u-bourgogne.fr/v.vincent/
33. T.R. Walsh, A simple sequencing and ranking method that works on almost all

Gray codes, Res. Rep. no. 243, Department of Mathematics and Computer Science,
University of Quebec at Montreal, April 1995.



14 Vincent Vajnovszki

34. T.R. Walsh, Generation of well-formed parenthesis strings in constant worst-case
time, Journal of Algorithms 29(1) (1998), 651–673.

35. H.S. Wilf, Combinatorial algorithms: An update, SIAM, CBNS 55, 1989.
36. J. Wu, Extended Fibonacci Cubes, IEEE Transactions on Parallel and Distributed

Systems 8(12)(1997), 1203–1210.


