
ECO-based Gray codes generation for particular

classes of words

Extended abstract

Vincent Vajnovszki

LE2I, Université de Bourgogne

BP 47870, 21078 Dijon Cedex, France

vvajnov@u-bourgogne.fr

June 3, 2012

1 Introduction

A general Gray code for a very large family of combinatorial objects is given in [4]; it

is based on generating trees (or ECO operators) and objects are encoded by their cor-

responding path in the generating tree and often it is possible to translate the obtained

codes into codes for objects. Later, in [3, 7, 18] the ECO method is applied for generating

Gray codes for some restricted classes of permutations. Motivated by these papers, we

investigate the related problem for several classes of words. More precisely, we express in

terms of ECO method known Gray codes for Dyck words, Grand Dyck words and com-

binations, and develop new Gray codes for Motzkin and Schröder words. The techniques

we present here is, in a way, complementary to that of [4]: it is less general but easy to

describe, understand, implement and manipulate. Also, our generating trees-based con-

struction is an alternative to the reversing sublists technique [12], shuffle combinatorial

objects [15], order relations [17, 19] or bubble languages [13], and has the advantage that

intermediate produced objects are still (smaller size) objects in the same class. Some

preliminary results concerning binary words have been presented in [16].

ECO operators and rules. We recall the definition of an ECO operator as it is formal-

ized in [1]. Let O be a class of combinatorial objects and On the subclass of objects of size

n. An operator ϑ on the class O is a family of functions (one for each n) ϑ : On → 2On+1

with 2On being the power set of On. If the operator ϑ satisfies the following conditions:

1. if x1, x2 ∈ O, and x1 6= x2, then ϑ(x1) ∩ ϑ(x2) = ∅,

1

2. for each y ∈ On, n ≥ 1, there exists a unique x ∈ On−1 such that y ∈ ϑ(x),

then {ϑ(x)}x∈On−1
, n ≥ 1, is a partition of On and ϑ is called an ECO operator.

Alternatively, an ECO operator can be expressed in terms of ECO (or succession) rules.

A colored integer is an integer or an integer with a subscript which is called color. For

a colored integer e, |e| denotes the value of e regardless its color and |e| = e if e is simply

an integer. For instance |2a| = 2 and |3| = 3.

A succession rule on a set of colored integers Σ is a formal system consisting of a root

e0 ∈ Σ and a set of productions of the form

{(k) (e1(k))(e2(k)) · · · (e|k|(k))}k∈Σ

with each ei(k) ∈ Σ, 1 ≤ i ≤ |k|, which explain how to derive, for any given k ∈ Σ, its

|k| successors, (e1(k)), (e2(k)), . . . , (e|k|(k)), see for instance [1]. In this context Σ is called

the set of labels.

A generating tree induced by a succession rule is an infinite tree with the root (at level

zero) labelled by (e0). Each node labelled by (k) has |k| successors with the labels given

by the production rules. A tree is a generating tree for a class of combinatorial objects if

there exists a bijection between the objects of size n and the nodes at level n in the tree.

Note that a class of combinatorial objects may have several generating trees.

In the context of Gray codes we associate to each colored integer k ∈ Σ a direction,

down or up, and we denote by k the colored integer k with direction down and simply

by k the colored integer k with direction up. The list of successors of (k) is obtained by

reversing the list of successors of (k) then reversing the direction of each element of the

list. For instance, if the successors of (3) are, in order, (2), (3) and (4), then the successors

of (3) are (4), (3) and (2).

Dyck words and Grand Dyck words. A Dyck word is a binary word with the same

number of 1’s and 0’s and satisfying the suffix property: any suffix has at least as many 0’s

as 1’s. Dyck words code a wide variety of combinatorial objects including binary trees or

lattice paths. We denote by D2n the set of length 2n Dyck words. A natural generalization

of Dyck words are p-ary Dyck words which are binary words with exactly p − 1 times as

many 0’s as 1’s and satisfying the p-th order suffix property: any suffix has at least p − 1

times as many 0’s as 1’s. We denote by Dp
np the set of p-ary Dyck words of length np,

and D2
2n = D2n.

If the suffix property condition is dropped from the definition of Dyck (resp. p-ary

Dyck) words, then the obtained words are called Grand Dyck (resp. p-ary Grand Dyck)

words and the set of length 2n Grand Dyck (resp. length np p-ary Grand Dyck) words

is denoted by GD2n (resp. GDp
np), and GD2

2n = GD2n. Finally, the set of length n

binary words with exactly m occurrences of 0 is denoted by Cn,m and these words code

(n − m)-combinations of an n-element set. Obviously, Dp
np ⊂ GDp

np = Cnp,n(p−1).

2

Motzkin and Schröder words. A Motzkin word is a word over the alphabet {0, 1, a}

which after erasing each occurrence of a gives a Dyck word; and we denote Mn the set

of length n Motzkin words. A Schröder word is a Motzkin word in which each length

maximal factor of the form aa . . . a has even length. Clearly Schröder words have even

length and S2n denotes the set of length 2n Schröder words.

Gray codes and generating algorithms. A Gray code is an infinite collection of word-

lists, one list for words with same length, such that the number of positions in which two

consecutive words in each list differ is bounded (independently of the word-length) [20].

For a δ ≥ 1, a Gray code has distance δ if consecutive words differ in at most δ positions.

In particular, a Gray code for Dp
np (for GDp

np, or for Cn,m) is an exhaustive list for the

binary words under consideration such that successive words differ by the transposition

of a 1 and a 0, that is the list is 2-Gray code; a Gray code is circular if the last and the

first word in the list differ in the same way, and a Gray code is called homogeneous if the

1 and the 0 that exchange positions are separated only by 0’s.

In the context of ECO-based Gray codes, a (k) or (k) labeled node in the generating

tree corresponds to a word with k successors; and the successors of a (k) labeled node are

the same as for (k), but in reverse order.

An algorithm for generating a list of words is called CAT [14] (as Constant Average

Time) if the number of operations necessary to transform each word into its successor in

the list, is constant in average.

2 Dyck words

Let d = d1d2 . . . dnp be a p-ary Dyck word of length np, and ℓ be its length-maximal 0’s

suffix. In other words, d = d1d2 . . . dnp−ℓ0
ℓ with dnp−ℓ = 1, and the suffix 0ℓ is called the

last descent of d. For each u, 0 ≤ u ≤ ℓ, the word d1d2 . . . dnp−ℓ0
u10ℓ−u+p−1 is a p-ary

Dyck word of length (n + 1)p called a successor of d. This succession rule is called last

descent rule. For example, the three successors of the length six binary Dyck word 110100

according to this rule are: 11011000, 11010100 and 11010010; see Fig. 1 (a) where Dyck

words are represented as lattice paths.

A (k) labeled node in the generating tree corresponds to a p-ary Dyck word with its

last descent of length k−1. Its (ordered list of) successors are obtained by inserting, from

right to left, a 1 into its last descent, then adding a 0p−1 suffix; and the successors of a

(k) labeled node are the same but in reverse order. For example, the Dyck word 110100

in Fig. 1 (a) must be labeled by (3) in the generating tree.

Theorem 1. The succession rule

{

(1)

(k) (p)(p + 1) · · · (p + k − 1)
(1)

3

(a) (b)

Figure 1: (a) The three successors, according to the last descent rule, of the binary Dyck

word 110100: 11011000, 11010100 and 11010010. (b) The three successors, according to

the last descent rule, of the binary word 0100: 01100, 01010 and 01001.

gives a circular Gray code for p-ary Dyck words, where the root of the generating tree is

the empty word ǫ.

See Fig. 2 for the first levels of the generating tree induced by the succession rule

(1) with p = 2; and Fig. 3 (a) for the first four levels of the 3-ary Dyck words (p = 4)

generated by this rule.

Proposition 1. For p ≥ 2, the first and last length np word given by the succession rule

(1) is (10p−1)n, n ≥ 1, and 1102p−2(10p−1)n−2, n ≥ 2, respectively.

Remark 1. For p = 2, the Gray code induced on D2n by the succession rule (1) is the

reverse of Ruskey-Proskurowski’s Gray code [11].

Now, we give a succession rule for a more restrictive Gray code for Dp
np; as expected,

this rule is more complicated and involves colored labels.

Theorem 2. The succession rule

(1)a

(ka) (pa) (p + 1)b (p + 2)b · · · (p + k − 1)b

(kb) (p + k − 1)a (pa) (p + 1)b (p + 2)b · · · (p + k − 2)b

(2)

gives a homogeneous Gray code for p-ary Dyck words, where the root of the generating

tree is the empty word ǫ.

Proposition 2. The first and last length np word given by the succession rule (2) is

(10p−1)n and 1n0(p−1)n, respectively, for n ≥ 1.

Remark 2. The Gray code induced on Dp
np by the succession rule (2) is Eades-McKay-

Bultena-Ruskey’s Gray code [8, 5].

4

(1) (2)

(2)

(2)
(2)

(3)

(3)

(4)

(3)

(2)

(3)

(4)

(2)

(3)

(4)

(5)

(3)

(2)

(3)

(4)

(2)
(3)

(2)

ǫ 10

1010

101010
10101010

10101100

101100

10111000

10110100

10110010

1100

111000

11100010

11100100

11101000

11110000

110100

11010010

11010100

11011000

110010
11001100

11001010

(a) (b)

Figure 2: (a) The first five levels of the tree induced by the succession rule (1) for p = 2;

and (b) the corresponding generated binary Dyck words.

5

3 Combinations and Grand Dyck words

Let d = d1d2 . . . dn be a binary word in Cn,m, and ℓ be its length-maximal 0’s suffix; that

is, d = d1d2 . . . dn−ℓ0
ℓ with dn−ℓ = 1, and as above, the suffix 0ℓ is called the last descent

of d. For each u, 0 ≤ u ≤ ℓ, the word d1d2 . . . dn−ℓ0
u10ℓ−u is a length (n + 1) binary

word in Cn+1,m, called a successor of d. This succession rule is the last descent rule for

combinations. For example, the three successors of the length four binary word 0100 are:

01100, 01010 and 01001; see Fig. 1 (b) where binary words are represented as lattice

paths. This recursive construction of Cn,m gives the following succession rule, where the

size zero object is 0m, the unique binary word in Cm,m.

Theorem 3. For a fixed m ≥ 1, the succession rule
{

(m + 1)

(k) (1)(2) · · · (k)
(3)

gives a (circular) Gray code for Cn,m, n ≥ m.

Proposition 3. The first and last length n word given by the succession rule (3) are

0m1n−m, and 10m1n−m−1, respectively.

See Fig. 3 (b) for the first five levels of the generating tree induced by the succession

rule (3) for m = 3. In particular, for a given p ≥ 2, when n = m
p−1

· p, (that is, at level

n−m in the generating tree) the succession rule (3) yields a Gray code for GDp
n = Cn,m.

Remark 3. The Gray code induced on Cn,m by the succession rule (3) is the revolving

door Gray code [9, 10].

4 Motzkin words

Let w ∈ Mn be a length-n Motzkin word, s its length-maximal suffix which does not

contain the letter 1, and k = |s|a + 1. The following points below give the successors of

w, and so an ECO operator for the set of Motzkin words.

• The word wa is a Motzkin word of length n + 1 with k + 1 successors;

• If |s|a > 0, then for a given j, |s|a ≥ j > 0 let w′as′′ be the factorization of w where

s′′ is the suffix of w with exactly j − 1 occurrences of a. The word v = w′1s′′0 is a

Motzkin word of length n + 1; it has j successors.

Theorem 4. The succession rule
{

(1)

(k) (1)(2) · · · (k − 1)(k + 1)
(4)

gives a Gray code for Mn with distance 4.

6

ǫ 100

100100

100100100

100101000

100110000

101000

101100000

101010000

101001000

101000100

110000

111000000

110100000

110010000

110001000

110000100

000

0001 00011 000111

0010
00110

001101

001110

00101 001011

0100

01100

011001

011010

011100

01010
010101

010110

01001 010011

1000

11000

110001

110010

110100

111000

10100

101001

101010

101100

10010
100101

100110

10001 100011

(a) (b)

Figure 3: (a) The first four levels of the generated 3-ary Dyck words (p = 3) induced

by the succession rule (1). (b) The first four levels of the generating tree induced by the

succession rule (3) with m = 3.

7

5 Schröder words

Let w ∈ S2n, and k be the length of its length-maximal 0’s suffix, plus one; and w′ the

prefix of w such that w = w′0k−1. Then w has 2k successors and the following points

below give the successors of w, and so an ECO operator for the set of Schröder words.

• waa ∈ S2n+2 is a length 2n + 2 Schröder word with 2 successors;

• w′100k−1 ∈ S2n+2 is a length 2n + 2 Schröder word with 2k + 2 successors.

In addition, if k > 1, then for any j, 1 ≤ j ≤ k − 1 we have

• w′0k−1−jaa0j ∈ S2n+2; it has 2j successors;

• w′0k−j100j−1 ∈ S2n+2; it has 2j successors.

Theorem 5. The succession rule
{

(2)

(2k) (2)(4)(4)(6)(6) · · · (2k)(2k)(2k + 2)
(5)

gives a Gray code for Sn with distance 5.

6 Algorithmic implementation

The direct algorithmic implementation of the succession rule (1) gives the algorithm

gen Dyck up below. The words are stored in the global array d, and for convenience

it is initialized by 0np, and the main call is gen Dyck up(0,1) corresponding to the root

of the generating tree. The procedure gen Dyck down, not shown, essentially executes

the statements of gen Dyck up in reverse order and replaces the calls of gen Dyck up by

gen Dyck down and vice-versa.

procedure gen Dyck up(size, k)

local i;

if size = n · p then Print(d);

elsed[size + 1] := 1;

gen Dyck up(size + p, p);

d[size + 1] := 0;

for i from p + 1 to k + p − 1 do

d[size + p + 1 − i] := 1;

gen Dyck down(size + p, i);

d[size + p + 1 − i] := 0;

end do

end if

end procedure.

8

Proposition 4. Procedure gen Dyck up generates p-ary Dyck words of length np in con-

stant average time.

Proof. This algorithm satisfies the following properties:

1. the total amount of computation in each call is proportional with the number of

direct calls produced by this call,

2. each non-terminal call, except the root, produces at least two recursive calls (i.e.,

there is no call of degree one, except to the main call), and

3. each terminal call (degree-zero call) produces a new permutation.

In [14] it is shown that a generating algorithm satisfying these properties runs in constant

average time. See Figure 2 (b) for the first levels of the tree induced by the call of

gen Dyck up(0,1) with p = 2.

The algorithmic implementation of the succession rule (2) is similar to the one of (1)

and we have:

Proposition 5. The algorithmic implementation of the succession rule (2) gives a CAT

generating algorithm for a homogeneous Gray code for p-ary Dyck words of length np.

Generally, the implementation of the succession rule (3) for Cn,m does not give a CAT

algorithm. Nevertheless, for an integer p ≥ 2 and for n = mp

p−1
, numerical evidences show

that total amount of computation

number of generated words
≤ 2; and so, it seems that the succession rule (3) yields a

CAT algorithm for the set of p-ary Grand Dyck words.

Based on succession rules (4) and (5), similar algorithms with same time complexity

can be developed for Motzkin and Schröder words.

References

[1] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, ECO: a methodology for the

enumeration of combinatorial objects J. Differ. Equations Appl. 5 (4-5) (1999), 435–

490.

[2] S. Bacchelli, E. Barcucci, E. Grazzini, E. Pergola, Exhaustive generation of combi-

natorial objects by ECO, Acta Informatica, 40 (8) (2004), 585-602.

[3] J-L. Baril and P-T. Do, ECO-generation for p-generalized Fibonacci and Lucas per-

mutations, Journal of Pure Mathematics and Applications, 17 (1-2) (2006), 19-37.

[4] A. Bernini, E. Grazzini, E. Pergola, R. Pinzani, A general exhaustive generation

algorithm for Gray structures, Acta Informatica, 44 (5) (2007), 361–376.

9

[5] B. Bultena, and F. Ruskey, An Eades–McKay algorithm for well–formed parentheses

strings, Information Processing Letters 68 (1998), 255–259.

[6] A. Del Longo, A. Frosini, S. Rinaldi. ECO method and the exhaustive generation of

convex polyominoes, Discrete Mathematics and Theoretical Computer Science, LNCS

2731, 2003, 129–140.

[7] W.M.B. Dukes, M.F. Flanagan, T. Mansour, V. Vajnovszki, Combinatorial Gray

codes for classes of pattern avoiding permutations, TCS 396 (2008), 35-49.

[8] G. Eades, B. McKay, An algorithm for generating subsets of fixed size with a strong

minimal change property, IPL 19 (1984), 131–133.

[9] C.N. Liu, D.T. Tang. Algorithm 452, enumerating m out of n objects. Comm. ACM

16 (1973), 485.

[10] A. Nijenhuis, H.S. Wilf. Combinatorial Algorithms for Computers and Calculators.

Academic Press, 1978.

[11] F. Ruskey, A. Proskurowski, Generating binary trees by transpositions, Journal of

Algorithms 11 (1990), 68–84.

[12] F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists, in

ISAAC Conference, LNCS, 762 (1993), 201–208.

[13] F. Ruskey, Joe Sawada, Aaron Williams, Binary bubble languages and cool-lex order,

to appear in Journal of Combinatorial Theory, Series A.

[14] F. Ruskey, Combinatorial Generation, book in preparation.

[15] V. Vajnovszki, Gray visiting Motzkins, Acta Informatica 38(2002), 793-811.

[16] V. Vajnovszki, Simple Gray codes constructed by ECO method, JMIT, Mons, Bel-

gique, 27-30 august 2008.

[17] V. Vajnovszki, More restrictive Gray codes for necklaces and Lyndon words, Infor-

mation Processin Letters, 106 (3), (2008) 96-99.

[18] V. Vajnovszki, Generating involutions, derangements, and relatives by ECO,

DMTCS, 12 (1) (2010) 109-122.

[19] V. Vajnovszki, R. Vernay, Restricted compositions and permutations: from old to

new Gray codes, Information Processin Letters, 111 (2011), 650-655.

10

[20] T. Walsh, Generating Gray codes in O(1) worst-case time per word, 4th Discrete

Mathematics and Theoretical Computer Science Conference, Dijon-France, 7-12 July

2003 (LNCS 2731, 71-88).

[21] M. Weston, V. Vajnovszki, Gray codes for necklaces and Lyndon words of arbitrary

base, PuMA, 17 (1-2) (2006), 175–182.

11

