
Gray Code for Derangements

Jean-Luc Baril, Vincent Vajnovszki
1

LE2I UMR CNRS 5158, Université de Bourgogne

B.P. 47 870, 21078 DIJON-Cedex France

e-mail: {barjl}{vvajnov}@u-bourgogne.fr

Abstract

We give a Gray code and constant average time generating algorithm for derange-

ments, i.e., permutations with no fixed points. In our Gray code, each derangement
is transformed into its successor either via one or two transpositions or a rotation
of three elements. We generalize these results to permutations with number of fixed
points bounded between two constants.

Key words: restricted permutations, Gray codes, generating algorithms

1 Introduction

Various studies have been made on Gray codes and generating algorithms for
permutations and their restrictions (with given ups and downs [8,10], involu-
tions, and fixed-point free involutions [16]) or their generalizations (multiset
permutations [7,14]). See [6] and [12] for surveys of permutation generation
methods.

A length-n derangement (or rencontre or coincidence) is a permutation π ∈ Sn

with no fixed points, that is, π(i) 6= i for all i ∈ [n] = {1, 2, . . . , n}. If Dn is the
set of all length-n derangements, then a recurrence relation for dn = card(Dn)
is given by

dn = (n− 1)(dn−1 + dn−2) (1)

for n ≥ 2, with d1 = 0 and d2 = 1; see for instance [4, p. 180] or [13, p.
67]. There are sequential [1] and parallel [2, p. 650] algorithms for generating
derangements in lexicographic order and our construction of a Gray code for
the set Dn is based on the combinatorial proof of relation (1) above.

1 Corresponding author.

Preprint submitted to Elsevier Science 9 September 2005

We represent permutations in one-line notation; i.e., π = (i1, i2, . . . , in) iff
π(k) = ik, and if σ = (σ1, σ2, . . . , σn) is a length-n integer sequence, then σ · π
is the sequence (σπ(1), σπ(2), . . . , σπ(n)). As a particular case, when σ ∈ Sn then
σ · π ∈ Sn is their composition (or product).

Let i1, i2, . . . , ik be k different values in [n] = {1, 2, . . . , n}, 1 ≤ k ≤ n. The
cycle γ = 〈i1, i2, . . . , ik〉 is the following permutation: γ(i1) = i2, γ(i2) = i3,
. . ., γ(ik−1) = ik, γ(ik) = i1, and γ(j) = j for all j 6= iℓ, 1 ≤ ℓ ≤ k. A length-
two cycle is a transposition, and each cycle can be written as a product of
transpositions: 〈i1, i2, . . . , ik〉 = 〈i1, ik〉 · 〈i1, ik−1〉 · . . . · 〈i1, i2〉 for k ≥ 2. Also,
the composition of two cycles with disjoint domains is commutative, and each
permutation is the product of cycles with disjoint domains. In a permutation
σ ∈ Sn, transposing the positions i and j corresponds to the product σ · 〈i, j〉
and transposing the values x and y corresponds to the product 〈x, y〉 · σ.

For a length-n integer sequence α = (α(1), α(2), . . . , α(n)) and a permutation
π in Sn, we say that π is the normal form of α if α is order-isomorphic to π,
i.e., α(i) < α(j) if and only if π(i) < π(j), for all 1 ≤ i, j ≤ n. In this case, all
the elements of α are distinct.

In the Gray code we give in the next section, a derangement is obtained from
the previous one via one or two transpositions, and, as a particular case when
the domains of the two transpositions are not disjoint, via a length-three cycle.
In Section 3 this code is implemented as a generating algorithm and in Section
4 it is extended for permutations with a given number of fixed points and for
permutations with the number of fixed points between two bounds.

A list L for a set L of integer sequences is an ordered list of the elements of
L. first(L) is the first element and last(L) the last element on the list L;

L is the list obtained by reversing L, and obviously first(L) = last
(

L
)

and

first
(

L
)

= last(L); L(i) is the list L if i is even, and L if i is odd; if L1 and

L2 are two lists, then L1 ◦L2 is their concatenation, and generally
n

©
i=1

Li is the

list L1 ◦ L2 ◦ . . . ◦ Ln.

2 The Gray code

In this section, first we show how the set Dn can by recursively constructed
from Dn−1 and Dn−2, and then we extend this construction to lists of derange-
ments in order to obtain a Gray code.

Let τ be a length-(n − 1) derangement, n ≥ 3, and let i be an integer such
that 1 ≤ i ≤ n− 1. If we denote by σ the permutation in Sn obtained from τ

2

by replacing the entry with value i by n and appending i in the last position,
then σ is a length-n derangement with n not belonging to a transposition.

Similarly, let τ be a length-(n−2) derangement, n ≥ 4, and let i be an integer
such that 1 ≤ i ≤ n− 1. If σ denotes the permutation in Sn obtained from τ

by: (1) adding one to each entry greater than or equal to i, (2) inserting n in
position i, and finally (3) appending i in the last position, then σ is a length-n
derangement with n belonging to a transposition (the transposition 〈i, n〉).
Moreover, each length-n derangement, n ≥ 4, can be uniquely obtained by
one of these constructions.

More formally, for n > 0, let D′

n be the set of length-n derangements where
n does not belong to a transposition and D′′

n its complement, i.e., n belongs
to a transposition. Clearly, D′

1 = D′′

1 = D′

2 = ∅, and D2 = D′′

2 is the single
derangement list (2, 1); and D′

n ∪ D′′

n is a two-partition of the set Dn of all
length-n derangements. The functions φ and ψ defined below give a bijection
between [n− 1] ×Dn−1 and D′

n on the one hand and between [n− 1] ×Dn−2

and D′′

n on the other.

Definition 1

(1) For n ≥ 3, an integer i ∈ [n− 1] and a derangement τ ∈ Dn−1, we define
a length-n permutation σ = φn(i, τ) by

σ(j) =

n if τ(j) = i

i if j = n

τ(j) otherwise.

(2) For n ≥ 4, an integer i ∈ [n− 1] and a derangement τ ∈ Dn−2, we define
a length-n permutation σ = ψn(i, τ) by

σ(j) =

i if j = n

n if j = i

τ(j) if j < i and τ(j) < i

τ(j) + 1 if j < i and τ(j) ≥ i

τ(j − 1) if j > i and τ(j − 1) < i

τ(j − 1) + 1 if j > i and τ(j − 1) ≥ i.

With i and τ as above, it is easy to see that

• φn(i, τ) ∈ D′

n and φn : [n− 1] ×Dn−1 → D′

n is a bijection; and
• ψn(i, τ) ∈ D′′

n and ψn : [n− 1] ×Dn−2 → D′′

n is a bijection.

So, for dn = card(Dn) we have dn = card(D′
n) + card(D′′

n) = (n − 1)dn−1 +
(n− 1)dn−2 which is a combinatorial proof of (1).

Conversely, we have

3

Remark 2 If σ ∈ Dn, n ≥ 4, and i = σ(n), then

(1) if σ(i) 6= n (n is not in a transposition in σ) then σ = φn(i, τ) with τ the
permutation represented by the first n− 1 entries of 〈i, n〉 · σ;

(2) if σ(i) = n (n is in a transposition in σ) then σ = ψn(i, τ) with τ the per-
mutation represented by the normal form of the sequence (σ(1), σ(2), . . . , σ(i−
1), σ(i+ 1), . . . , σ(n− 1)).

In the following we will omit the subscript n for the functions φ and ψ, and it
should be clear by context. Also, we extend the functions φ and ψ in a natural
way to sets and lists of derangements. For i ∈ [n − 1] and L a list of length-
(n−1) derangements we have φ(i,L) = φ(i,L), φ(i, f irst(L)) = first(φ(i,L)),
and φ(i, last(L)) = last(φ(i,L)). Similar results hold for the function ψ.

Let Dn be the list for the set Dn defined by

Dn = φ(1,Dn−1) ◦ ψ(1,Dn−2)
◦ψ(2,Dn−2) ◦ φ(2,Dn−1)
◦φ(3,Dn−1) ◦ ψ(3,Dn−2)
...

=
n−1

©
i=1

(

φ(i,Dn−1) ◦ ψ(i,Dn−2)
)(i+1)

(2)

for n ≥ 3, anchored by D1 = ψ(1, ∅) = ψ(2, ∅) = ∅ and D2 = (2, 1).

In Fig. 1 below, the list Dn is illustrated for even and odd n by a path, where
going down means generating a sublist in direct order and going up means
generating it in reverse order.

: :�(1;Dn�1) �(2;Dn�1) (1;Dn�2) (2;Dn�2)�(n� 1;Dn�1) (n� 1;Dn�2) :
: : ::�(1;Dn�1) �(2;Dn�1) �(3;Dn�1) (1;Dn�2) (2;Dn�2) (3;Dn�2)�(n� 1;Dn�1) (n� 1;Dn�2)

(a) (b)

Fig. 1. The list Dn: (a) n is even, (b) n is odd.

Let fn denote the first derangement in the list Dn and ℓn denote the last one.
The following lemma evaluates fn and ℓn for all n.

4

Lemma 3 If n ≥ 3 then

(1) fn = (2, 3, . . . , n− 1, n, 1);
(2)

ℓn =

{

(2, 3, . . . , n− 2, n, 1, n− 1) if n is odd,
(2, 3, . . . , n− 2, 1, n, n− 1) if n is even.

Proof.

(1) fn = φ(1, fn−1), and by the induction hypothesis, fn = φ(1, (2, 3, . . . , n−
1, 1)) = (2, 3, . . . , n− 1, n, 1).

(2) If n is odd, then

ℓn = last
(

φ(n− 1,Dn−1) ◦ ψ(n− 1,Dn−2)
)

= first (φ(n− 1,Dn−1))

=φ(n− 1, fn−1)

= (2, 3, . . . , n− 2, n, 1, n− 1).

If n is even, then

ℓn = last
(

φ(n− 1,Dn−1) ◦ ψ(n− 1,Dn−2)
)

= last
(

ψ(n− 1,Dn−2)
)

=ψ(n− 1, fn−2)

= (2, 3, . . . , n− 2, 1, n, n− 1). 2

Note that fn(j) = ℓn(j) = j + 1 for all j = 1, 2, . . . , n− 3.

Table 1
The lists D4 and D5. In D5 the sublists φ(i,D4) and ψ(i,D3), in direct or reverse
order, for some i, 1 ≤ i ≤ 4, are in bold-face and italic, respectively.

D4 D5

1 2341 1 23451 12 35412 23 25413 34 23154

2 3421 2 34251 13 45132 24 54213 35 31254

3 4321 3 43251 14 51432 25 45213 36 21534

4 3412 4 34521 15 41532 26 54123 37 51234

5 3142 5 35421 16 54132 27 51423 38 25134

6 4312 6 43521 17 43152 28 45123 39 53124

7 2413 7 24531 18 31452 29 24153 40 31524

8 4123 8 45231 19 34152 30 41253 41 35124

9 2143 9 25431 20 43512 31 21453 42 53214

10 54231 21 34512 32 41523 43 35214

11 53421 22 53412 33 24513 44 23514

The next lemma ensures a smooth transition between the sublists in relation
(2), namely between: (i) the list ψ(i,Dn−2) and ψ(i+1,Dn−2), with i odd; (ii)
the list φ(i,Dn−1) and φ(i+1,Dn−1) with i even; and (iii) the list φ(i,Dn−1) and

5

ψ(i,Dn−2), or equivalently, the list ψ(i,Dn−2) and φ(i,Dn−1). More precisely,
successive derangements in Dn differ either by one or two transpositions or by
a circular shift of three elements.

Lemma 4

(i) If n ≥ 4 then

ψ(i+ 1, fn−2) =

{

ψ(i, fn−2) · 〈i− 1, n〉 · 〈i, i+ 1〉 if 1 < i ≤ n− 2
ψ(i, fn−2) · 〈1, 2〉 · 〈n− 1, n〉 if i = 1

(3)

or, conversely, by reading this relation left-to-right and replacing i by i−1

ψ(i− 1, fn−2) =

{

ψ(i, fn−2) · 〈i− 2, n〉 · 〈i− 1, i〉 if 2 < i ≤ n− 1
ψ(i, fn−2) · 〈1, 2〉 · 〈n− 1, n〉 if i = 2

(4)

(ii) If n ≥ 3 then

φ(i+ 1, fn−1) =

{

φ(i, fn−1) · 〈n, i, i− 1〉 if 1 < i ≤ n− 2
φ(i, fn−1) · 〈1, n− 1, n〉 if i = 1

(5)

or, conversely and by replacing i by i− 1,

φ(i− 1, fn−1) =

{

φ(i, fn−1) · 〈i− 2, i− 1, n〉 if 2 < i ≤ n− 1
φ(i, fn−1) · 〈n, n− 1, 1〉 if i = 2

(6)

(iii) If n = 4

ψ(i, ℓ2) =

{

φ(i, ℓ3) · 〈i, i+ 1〉 if i 6= 3
φ(i, ℓ3) · 〈1, 3〉 if i = 3

(7)

If n ≥ 5

ψ(i, ℓn−2) =

φ(i, ℓn−1) · 〈n− 2, n− 3, 1〉 if i = 1, n even
φ(i, ℓn−1) · 〈1, n− 3, n− 2〉 if i = 1, n odd
φ(i, ℓn−1) · 〈i− 1, i〉 · 〈n− 3, n− 2〉 if 2 ≤ i ≤ n− 4
φ(i, ℓn−1) · 〈n− 2, n− 3, n− 4〉 if i = n− 3
φ(i, ℓn−1) · 〈n− 4, n− 3, n− 1〉 if i = n− 2
φ(i, ℓn−1) · 〈n− 4, n− 2〉 · 〈n− 3, n− 1〉 if i = n− 1, n even
φ(i, ℓn−1) · 〈n− 1, n− 2, n− 4〉 if i = n− 1, n odd

(8)
or conversely

φ(i, ℓn−1) = ψ(i, ℓn−2) · π
−1 (9)

with π the permutation which occurs in the corresponding case in relation
(7) or (8). So, for example, if n ≥ 5, i = n− 1 then:

6

• φ(i, ℓn−1) = ψ(i, ℓn−2) · 〈n− 4, n− 2〉 · 〈n− 3, n− 1〉 if n is even (in this
case π = π−1)

• φ(i, ℓn−1) = ψ(i, ℓn−2) · 〈n− 1, n− 4, n− 2〉 if n is odd.

Proof. The proof is direct, and consists essentially of checking each case. For
brevity, we do not give the proof of (iii) which is similar to the first two cases.

(i) If 1 < i ≤ n− 2 then

1 i n

ψ(i+ 1, fn−2) = (2, , . . . , i− 1, i, i + 2, n, i+ 3, . . . , 1, i + 1)
ψ(i, fn−2) = (2, , . . . , i− 1, i + 1, n, i + 2, i+ 3, . . . , 1, i)

and if i = 1 then

1 n

ψ(2, fn−2) = (3, n, 4, . . . , n− 1, 1, 2)
ψ(1, fn−2) = (n, 3, 4, . . . , n− 1, 2, 1),

where the little numbers are indices of array elements.

(ii) If 1 < i ≤ n− 2 then

1 i n

φ(i+ 1, fn−1) = (2, . . . , i− 1, i, n, i+ 2, . . . , 1, i + 1)
φ(i, fn−1) = (2, . . . , i− 1, n, i + 1, i+ 2, . . . , 1, i)

and if i = 1 then

1 n

φ(2, fn−1) = (n, 3, . . . , n− 1, 1, 2)
φ(1, fn−1) = (2, 3, . . . , n− 1, n, 1). 2

Corollary 5 Successive derangements in Dn differ at most in four positions.

Note that Dn is a cyclic Gray code.

3 Generating algorithm

The definition given by (2) says that Dn is the concatenation of many lists,
which are all similar in some sense to Dn−1 or Dn−2. This result is formalized
in Lemma 9 below, and our generating algorithm for Dn is based on it. Now
we give some technical definitions.

7

Two lists are isomorphic if, in the first list, a sequence is transformed into
its successor via the same permutation as the corresponding sequence in the
second list is transformed into its successor; and two lists are similar if after
erasing the constant entries in the first list, and possibly reversing it, the lists
become isomorphic. More formally

Definition 6 Let L and S, respectively, be a list of length-n integer sequences
and a list of permutations in Sn. We say that L is isomorphic to S if:

(1) the lists contain the same number of sequences, say p,
(2) for all 1 ≤ j < p, if σ (resp. τ) is the jth sequence in L (resp. permutation

in S) and σ′ (resp. τ ′) is its successor in L (resp. S) then σ′ = σ · π,
where π is such that τ ′ = τ · π.

Definition 7 For a length-n integer sequence list L, a set T ⊆ [n] with
card(T) = m ≤ n, and a length-m permutation list S, we say that L is
T -similar to S if:

(1) for all i ∈ [n] \ T , the entry in position i has constant value throughout
the list L,

(2) after erasing all entries in positions i ∈ [n] \ T in each sequence in L the
obtained list is isomorphic to S or to S.

In the list L, indices in T and their corresponding entries are called active
(relative to S).

Clearly, if L is isomorphic to S then L is [n]-similar to S. See table 2 for an
example of isomorphic and similar lists.

Table 2
A is isomorphic to D4 and B = φ(2,D4) is {1, 2, 3, 4}-similar to D4. Note that A is
the reverse of the list obtained by erasing the last entry of each sequence in B.

D4 A B
2341 5341 51432
3421 3451 41532
4321 4351 54132
3412 3415 43152
3142 3145 31452
4312 4315 34152
2413 5413 43512
4123 4153 34512
2143 5143 53412

Lemma 8 If n ≥ 2 then

(1) for 1 ≤ i ≤ n the list φ(i,Dn) is {1, 2, . . . , n}-similar to Dn,
(2) for 1 ≤ i ≤ n+1 the list ψ(i,Dn) is {1, 2, . . . , i−1, i+1, . . . , n+1}-similar

to Dn.

8

Proof. (1) Clearly, each derangement in φ(i,Dn) has its last position, the
(n+1)-st one, equal to i. Consider σ in φ(i,Dn) and τ in Dn with σ = φ(i, τ).
Then σ′ = φ(i, τ ′) with σ′ and τ ′ the successor of σ and τ , respectively, and the
result holds by considering the form of τ and τ ′ given in point (1) of remark 2.
(2) This proposition is proved similarly, by considering the point (2) of re-
mark 2. 2

For U ⊂ T ⊆ [n] we say that U is a child-subset (or c-subset) of T if: (1) the
largest element of T is not in U , and (2) 1 ≤ card(T \ U) ≤ 2.

Lemma 9 Let L be a length-n sequence list, T ⊆ [n], and m = card(T) ≥ 4.
If L is T -similar to the derangement list Dm then L = L1 ◦ L2 ◦ . . . ◦ L2(m−1)

where each sublist Lj is Uj-similar to the derangement list Dcard(Uj), with Uj

a c-subset of T .

Proof. By Lemma 8 above and applying recursively relation (2). 2

Obviously, Dn is {1, 2, . . . , n}-similar to itself and the procedure gen up in Fig.
3 generates the list Dn accordingly to the preceeding lemma: the lists Lj are
produced iteratively, and each of them is generated recursively. So, each call of
this procedure fills up entries with indices in an active set T ⊆ [n] associated
with it, and in a recursive call T is replaced by a c-subset of T .

In our algorithm, the set T of active indices is represented by four global
variables: the integers head and tail and the arrays succ and pred, defined
as follows. If at a computational step T = {i1, i2, . . . , ik}, then head = i1,
tail = ik, succ[ij] = ij+1, and pred[ij] = ij−1.

If the active set associated with the current call is T , then the call of gen up(j, t, run)
initiated by the current call generates a sublist that is U -similar to Dj , where

U =

{

T \ {tail} if t = φ

T \ {run, tail} if t = ψ

(recall that tail = max(T)).

Less formally, gen up(j, φ, run) produces a ‘φ(i,Dj)-like’ list, and gen up(j, ψ, run)
produces a ‘ψ(i,Dj)-like’ list (see the relation (2)), where run is the ith ele-
ment in the set T . The call of gen down works as gen up except Dj is replaced
by Dj .

For a simpler expression of the generating algorithm we consider initially the
active set T = [n+1], and each call begins by removing tail, the largest element
in T . Thus, before the first call of the generating procedure, the variables which
correspond to T are: head = 1, tail = n + 1, succ[i] = i + 1 for 1 ≤ i ≤ n,

9

procedure gen up(n, t, r)
var i,run;
begin

tail := pred[tail];
if t = ψ then remove(r); endif

if n = 3
then d := d · 〈head, succ[head], tail〉;
else run := head

for i := 1 to n− 1 do

if i is odd
then gen up(n− 1, φ, run); // produce a φ(i,Dn−1)-like list

update d as in (7) or (8);
if n > 4 then

gen down(n− 2, ψ, run);// produce a ψ(i,Dn−2)-like list

endif

if i 6= n− 1
then update d as in (3); run := succ[run];
endif

else if n > 4 then

gen up(n− 2, ψ, run); // produce a ψ(i,Dn−2)-like list

endif

update d as in (9);
gen down(n− 1, φ, run); // produce a φ(i,Dn−1)-like list

if i 6= n− 1
then update d as in (5); run := succ[run];
endif

endif

enddo

endif

if t = ψ then append(r); endif

tail := succ[tail];
end

Fig. 2. Generating derangements in Gray code order.

and pred[i] = i− 1 for 2 ≤ i ≤ n+ 1. The current derangement is stored in a
global variable d, initialized by d = first(Dn).

The main call gen up(n, φ, 0) produces the list Dn, n ≥ 3, and the value
r = 0 is for convenience; in fact when t = φ the value of r is not required.
The procedure which generates the reverse list Dn is called gen down, shown
in the appendix, and essentially executes the statements of gen up in reverse
order and replaces the calls of gen up by gen down and vice-versa. Procedures
remove(r) and append(r), also shown in the appendix, remove and append r
in the current active set (given by the variables head, tail, succ, and pred).

10

Between any successive calls at least one update statement is performed, and
after each update statement (including the case n = 3) a new derangement
is produced and printed out. The current derangement d is transformed into
its successor according to relations (3), (5), (7), (8), or (9) in Lemma 4. More
precisely, the current derangement is subject to the transformation given in
the appropriate case of Lemma 4, and it acts on the active indices.

For example, in our algorithm relation (5) becomes:

if i = 1
then d := d · 〈head, pred[tail], tail〉;
else d := d · 〈tail, run, pred[run]〉;
endif

Clearly, the time complexity of gen up is proportional to the total number of
recursive calls. Since each call produces at least one new derangement the time
complexity of gen up(n, t, r) is in O(dn). A C implementation of our algorithm
is available at http://www.u-bourgogne.fr/v.vincent/AA/.

4 Permutations with a given number of fixed points

Here we generalize the Gray code in the previous sections to permutations with
a given number of fixed points and permutations with a bounded number of
fixed points.

Let c = (c(1), c(2), . . . , c(n)) be an n-combination of m, n ≤ m, in integer
sequence representation, so that 1 ≤ c(i) < c(i+1) ≤ m for i = 1, 2, . . . , n−1.
Also, let tc = t be the binary representation of c, i.e., t = (t(1), t(2), . . . , t(m))
with t(i) = 1 if there exists a j such that c(j) = i, and t(i) = 0 elsewhere.
With those notations, for a derangement d = (d(1), d(2), . . . , d(n)) ∈ Dn we
define the length-m sequence u = (u(1), u(2), . . . , u(m)), denoted by (c; d),
as

u(i) =

{

i if t(i) = 0,
c(d(j)) if t(i) is the jth 1 in t,

(10)

and we call u = (c; d) the shuffle of c by d on the trajectory t.

In other words, u acts on indices c(1), c(2), . . . , c(n) as d, and fixes the other
indices. The shuffle operator over combinatorial objects was formally defined in
a larger context in [14,15]. It is not hard to show that (c; d) is a permutation
of [m] with exactly n “deranged” points (i.e. with exactly m−n fixed points),

11

and in addition, each such permutation can be uniquely constructed by shuffle
operation from an appropriate combination and a derangement. More formally,
if u = (u(1), u(2), . . . , u(m)) is a permutation of [m] with exactly m− n fixed
points then u = (c; d), where

• c = (c(1), c(2), . . . , c(n)) is the n-combination of m corresponding to the
subset of [m] where u(i) 6= i, and

• d is the normal form of the sequence (u(c(1)), u(c(2)), . . . , u(c(n))).

Example. If n = 3, m = 6, c = (2, 5, 6), and d = (2, 3, 1) then t =
(0, 1, 0, 0, 1, 1) and (c; d) = (1, 5, 3, 4, 6, 2); or if n = 4,m = 6, c = (1, 2, 4, 5),
and d = (2, 4, 1, 3) then t = (1, 1, 0, 1, 1, 0) and (c; d) = (2, 5, 3, 1, 4, 6).

See also [16] for a similar approach. To summarize, we have:

Lemma 10 If Cm,n is the set of all n-combinations of [m] and Sm,n the set
of all permutations of [m] with exactly m− n fixed points then

: Cm,n ×Dn → Sm,n

defined by (10) is a bijection.2

Also, we extend the shuffle operation in a natural way to lists of derangements:
if D = d1, d2, . . . is a sublist of Dn and c ∈ Cm,n then (c;D) is the list

(c; d1), (c; d2), . . ., and (c;D) = (c;D).

A strong Gray code for the set Cm,n of n-combinations ofm, in integer sequence
representation, is a list for Cm,n where two successive sequences, say c =
(c(1), c(2), . . . , c(n)) and c′ = (c′(1), c′(2), . . . , c′(n)), are such that, for some
1 ≤ j ≤ m, c(i) = c′(i) for all i 6= j; see [3,5,11] for such a Gray code.

Lemma 11 If Cm,n is a strong Gray code for the set Cm,n then the list Sm,n

defined by

Sm,n = ©
c in Cm,n

(

c;D(r)
n

)

(11)

is a Gray code for the set Sm,n, where r is the rank of c in Cm,n (the first
combination in Cm,n has rank zero) and D(r)

n is Dn or Dn according as r is
even or odd.

Proof. The list Sm,n has no repetitions, and, disregarding the order, it equals
the set Sm,n. Moreover, for a fixed c in Cm,n, the Hamming distance between
two derangements in Dn, say d and d′, equals the Hamming distance be-
tween (c; d) and (c; d′). So, any successive permutations in (c;Dn) —

or equivalently in
(

c;Dn

)

— differ in at most four positions. If c′ is the

successor of c in Cm,n then t′ = tc′ and t = tc, the binary representations of
c′ and c, differ in exactly two positions, say k and ℓ, with t(k) = t′(ℓ) = 0

12

and t′(k) = t(ℓ) = 1. Since Cm,n is a strong Gray code, the permutations
σ = (c; d) and σ = (c′; d) differ in exactly three positions, namely k, ℓ and
i, where i is such that σ(i) = ℓ and σ′(i) = k. Moreover, the index i can be
computed in constant time if d is the first or last derangement in Dn. 2

The next lemma extends the result of the previous one to permutations where
the number of fixed points is bounded between two constants. In this case Cm,n

denotes the Eades-McKay Gray code for combinations, and it has (see [5,11])

• first(Cm,n) = (1, 2, . . . , n), and
• last(Cm,n) = (m− n+ 1, m− n+ 2, . . . , m).

Lemma 12 Let 1 ≤ k ≤ ℓ ≤ m and Sm,k,ℓ be the set of all permutations in
Sm with i “deranged” points, k ≤ i ≤ ℓ. Then the list

Sm,k,ℓ =
ℓ

©
i=k

S
(k−i)
m,i (12)

is a Gray code for the set Sm,k,ℓ.

Proof. It is sufficient to prove that the last permutation in S
(k−i)
m,i and the first

one in S
(k−i+1)
m,i+1 differ in at most four positions. But last(S

(k−i)
m,i) = (c, ei),

and first(S
(k−i+1)
m,i+1) = (c′, ei+1), with

(i) c = last(Cm,i) and c′ = last(Cm,i+1) if k − i is even, or
(ii) c = first(Cm,i) and c′ = first(Cm,i+1) if k − i is odd,

and ej = fj or ej = ℓj; see Lemma 3 and the remark that follows. If u = (c, ei)
and u′ = (c′, ei+1) then: in case (i), u(j) = u′(j) = j for all j = 1, 2, . . . , m−
i− 1 and u(j) = u′(j) = j + 1 for all j = m− i+ 1, m− i + 2, . . . , m− 3; in
case (ii), u(j) = u′(j) = j + 1 for all j = 1, 2, . . . , i − 3 and u(j) = u′(j) = j

for all j = i + 2, i + 3, . . . , m. In both cases u differs from u′ in at most four
positions.2

Algorithmic considerations

The lists
(

c;D(r)
n

)

in (11) is c-similar to Dn (c is regarded as a subset of

[m]) and the procedure gen up and gen down can easily be transformed to
generate these lists. In addition, with an efficient algorithm to compute the
successor of c in Cm,n and with appropriate initial values for the variables and
transition statements between lists, the iterative call of gen up and gen down
produces Sm,n in constant average time. See [16] and [14] for loopless generat-
ing algorithms for Cm,n. Similar considerations hold for the list Sm,k,ℓ defined in
relation (12). The loopless generation of those lists remains an open problem.

13

Acknowledgements

The authors thank the referees for various comments whose suggestions greatly
improved the present paper.

Note added in proof. We recently learned of Korsh’ and LaFollette’s [9]
algorithm for generating derangements. Their algorithm has the remarkable
properties (a) that successive permutations differ by only one transposition or
one rotation of three elements and (b) it is loopless. Our algorithm is based
on a recursive counting relation and has the advantage of being simpler to
describe.

14

Appendix

procedure gen down(n, t, r)
var i,run;
begin

tail := pred[tail];
if t = ψ then remove(r); endif

if n = 3 then d := d · 〈head, tail, succ[head]〉;
else run := pred[tail]

for i := n− 1 downto 1 do

if i is odd
then if n > 4 then

gen up(n− 2, ψ, run);
endif

update d as in (9);
gen down(n− 1, φ, run);
if i 6= 1
then update d as in (6); run := pred[run];
endif

else gen up(n− 1, φ, run);
update d as in (7) or (8);
if n > 4 then

gen down(n− 2, ψ, run);
endif

update d as in (4);
run := pred[run];

endif

enddo

endif

if t = ψ then append(r); endif

tail := succ[tail];
end

15

procedure remove(r)
begin

if r = head

then head := succ[r];
else if r = tail

then tail := pred[tail]
else succ[pred[r]] := succ[r];

pred[succ[r]] := pred[r];
endif

endif

end

procedure append(r)
begin

if r < head

then head := pred[head];
else if r > tail

then tail := succ[tail]
else succ[pred[r]] := r;

pred[succ[r]] := r;
endif

endif

end

References

[1] S.G. Akl, A new algorithm for generating derangements, BIT, 20 (1980), 2–7.

[2] S.G. Akl, The design and analysis of parallel algorithms, Prentice Hall,
Englewood Cliffs, New Jerse, 1989.

[3] P.J. Chase, Combination generation and graylex ordering, Congr. Numer., 69

(1989), 215–242.

[4] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions,
Reidel, Dordrecht-Holland, 1974.

[5] P. Eades and B. McKay, An algorithm for generating subsets of fixed size with
a strong minimal change property, IPL, 19 (1984), 131–133.

[6] D.E. Knuth, The Art of Computer Programming, Combinatorial Algorithms,
volume 4. Pre-fascicle 2b (Generating all permutations),
http://www-cs-staff.Stanford.EDU/ knuth/taocp.html#vol4, 2002.

[7] C.W. Ko and F. Ruskey, Generating permutations of a bag by interchanges,
IPL, 41, 5 (1992), 263–269.

[8] J.F. Korsh, Loopless generation of up-down permutations, Discrete Math., 240,
1-3 (2001), 97–122.

16

[9] J. Korsh and P.S. LaFollette, Constant Time Generation of Derangements,
Department Technical Report, Temple University CIS, December 2002.

[10] D. Roelants van Baronaigien and F. Ruskey, Generating permutations with
given ups and downs, Discrete Appl. Math., 36, 1 (1992), 57–65.

[11] F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists,
in ISAAC Conference, LNCS, 762 (1993), 201–208.

[12] R. Sedgewick, Permutation generation methods, Comput. Surveys, 9, 2 (1977),
137–164.

[13] R. Stanley, Enumerative Combinatorics, volume 1, Cambridge University Press,
Cambridge, England, 1997.

[14] V. Vajnovszki, A loopless algorithm for generating the permutations of a
multiset, to appear in TCS.

[15] V. Vajnovszki, Gray visiting Motzkins, Acta Informatica, 38 (2002), 793-811.

[16] T. Walsh, Gray codes for involutions, J. Combin. Math. Combin. Comput., 36

(2001), 95–118.

17

