
Restricted compositions and permutations: from old to new Gray

codes

V. Vajnovszki and R. Vernay

LE2I UMR CNRS 5158, Université de Bourgogne

B.P. 47 870, 21078 DIJON-Cedex France

e-mail: {vvajnov}{remi.vernay}@u-bourgogne.fr

March 30, 2011

Abstract

Any Gray code for a set of combinatorial objects defines a total order relation on this set:
x is less than y if and only if y occurs after x in the Gray code list. Let ≺ denote the order
relation induced by the classical Gray code for the product set (the natural extension of the
Binary Reflected Gray Code to k-ary tuples). The restriction of ≺ to the set of compositions
and bounded compositions gives known Gray codes for those sets. Here we show that ≺
restricted to the set of bounded compositions of an interval yields still a Gray code. An
n-composition of an interval is an n-tuple of integers whose sum lies between two integers;
and the set of bounded n-compositions of an interval simultaneously generalizes product set
and compositions of an integer, and so ≺ put under a single roof all these Gray codes.

As a byproduct we obtain Gray codes for permutations with a number of inversions lying
between two integers, and with even/odd number of inversions or cycles. Such particular
classes of permutations are used to solve some computational difficult problems.

1 Introduction

Roughly speaking, a Gray code is a listing of the objects in a combinatorial family so that
successive objects differ ‘in some pre-specified small way’ [5]. Here we adhere to the definition
given in [14]: a Gray code for a combinatorial family is a listing of the objects in the family
so that successive objects differ by a number of changes bounded independently of the object-
size. Alternative more restrictive definitions for Gray codes exist in literature; they are obtained
by imposing additional constraints. For instance, in [8, Section 7.2.1.3, page 10] is given an
example of a Gray code for combinations in binary word representation where two consecutive
words differ in two positions and all values between them are zeros. And in [12] is defined a
Gray code for generalized Dyck words where two consecutive words differ in two positions which
are either adjacent or separated by a zero.

For a given integer n, N
n denotes the set of all integer n-tuples and we adopt the convention

that lower case bold letters represent such n-tuples; e.g., w = w1w2 . . . wn.
An n-composition of an integer k is a tuple c with c1 + c2 + . . . + cn = k. Knuth gave1 a

definition of a Gray code for the set of n-compositions of an integer which is defined recursively
by Wilf [15] and implemented iteratively by Klingsberg [7]. For two n-tuples b and c, c is said

1unpublished answer to a question of Nijenhuis and Wilf.

1



b-bounded if 0 ≤ ci ≤ bi, for all i, 1 ≤ i ≤ n. Walsh [13] gave a loopless algorithm for generating
a Gray code for bounded compositions of an integer, and in particular for Knuth’s Gray code.

A b-bounded n-composition of the integer interval [k, ℓ] is a b-bounded tuple c with k ≤
c1 +c2 + . . .+cn ≤ ℓ. In particular, when k = ℓ we retrieve the notion of bounded n-composition
of k, and when k = ℓ = b1 = b2 = . . . = bn that of classical composition; and when k = 0 and
ℓ = b1 + b2 + . . .+ bn we retrieve the product set [b1]× [b2]× . . .× [bn]. So, bounded compositions
of an interval simultaneously generalize product set and (bounded) compositions of an integer.

In this paper we re-express Walsh’s and Knuth’s Gray codes for (bounded) compositions
of an integer in terms of a unique order relation, and so Walsh’s Gray code becomes a sublist
of Knuth’s one, which in turn is a sublist of the Reflected Gray Code. Based on this order
relation we generalize Knuth’s and Walsh’s Gray codes to bounded compositions of an interval
[k, ℓ]. We apply these results to obtain Gray codes for permutations with a number of inversions
ranging between two integers, and with an even/odd number of inversions or cycles. Such
particular classes of permutations are used to solve some computational difficult problems, see
for instance [2].

2 Notations and definitions

For an integer m ∈ N, [m] denotes the set {0, 1, . . . ,m} and for an n-tuple b ∈ N
n:

• [b] is the product set [b1] × [b2] × . . . × [bn], and

• ||b|| is the componentwise sum of b, i.e., ||b|| =
∑n

i=1 bi.

The Reflected Gray Code for the product set [b], denoted here by Gn(b), is the natural
extension of the Binary Reflected Gray Code [4] to this set. Gn(b) was defined recursively by Er
in [1] by the relation below and generated looplessly by Williamson in [16, p. 112].

Gn(b) =

{
∅ if n = 0,

0Gn−1(b
′), 1Gn−1(b

′), 2Gn−1(b
′), . . . , b1G

′
n−1(b

′) if n > 0,
(1)

where b′ = b2b3 · · · bn, Gn−1(b
′) is the reverse of Gn−1(b

′) and G′
n−1(b

′) is Gn−1(b
′) or Gn−1(b

′)
according as b1 is even or odd. In Gn(b) two consecutive tuples differ in a single position and by
+1 or −1 in this position, see the first column of the Table 1 for the list G3(2 1 3).

The Reflected Gray Code Order ≺ on N
n is defined as: x = x1x2 . . . xn is less than y =

y1y2 . . . yn in ≺ order, and we denote it by x ≺ y, if either

•
∑i−1

j=1 xj is even and xi < yi, or

•
∑i−1

j=1 xj is odd and xi > yi,

where i is the leftmost position with xi 6= yi. It is easy to see that Gn(b) lists tuples in [b] in ≺
order.

In the following we introduce the notions of successor, and the first and last tuple in a set;
unless explicitly specified otherwise, they are considered with respect to ≺ order:

• for A ⊂ N
n, first(A) and last(A) stand for the first and last tuple (in ≺ order) in the set A,

• for c ∈ [b], succb(c) is the successor of c (in ≺ order) in the product set [b],

• for a set A of tuples, A is the ordered list of tuples in A, listed in ≺ order.

2



3 Bounded compositions of an interval

Definition 1. For three integers n ∈ N, k ∈ Z and ℓ ∈ N with k ≤ ℓ, and an n-tuple b =
b1b2 . . . bn ∈ N

n, a b-bounded n-composition of the interval [k, ℓ] is a n-tuple c = c1c2 . . . cn ∈ N
n

such that

• k ≤
∑n

i=1 ci ≤ ℓ, and

• 0 ≤ ci ≤ bi, for 1 ≤ i ≤ n.

We denote by W b

k,ℓ the set of b-bounded n-compositions of [k, ℓ], and obviously W b

k,ℓ =

∪ℓ
i=kW

b

i,i. For c ∈ W b

k,ℓ, succb

k,ℓ(c) denotes the successor of c (in ≺ order) in the set W b

k,ℓ and in
the following we will omit the upper index b when it does not create ambiguity.

Remark that in the previous definition k can be a negative number; in this case Wk,ℓ = W0,ℓ.
Similarly, Wk,ℓ = Wk,||b|| if ℓ ≥ ||b||.

Remark 1. As particular cases we obtain:

• W0,||b|| is the product set [b] generated looplessly in [16, p. 112],

• Wk,k is the set of b-bounded n-compositions of k generated looplessly in [13],

• If b = [k]n, then Wk,k is the set of unrestricted n-compositions of k.

It can happen that first(Wk,ℓ) = first(Wk+1,ℓ+1). This case occurs only if 00 . . . 0 belongs
both to Wk,ℓ and Wk+1,ℓ+1, and so when k + 1 ≤ 0. Similarly, it can happen that last(Wk,ℓ) =
last(Wk+1,ℓ+1), and this case occurs only if last([b]) belongs both to Wk,ℓ and Wk+1,ℓ+1. Formally,
we have:

Lemma 1.

(i) first(Wk+1,ℓ+1) and first(Wk,ℓ) are either both equal to 00 . . . 0, or they differ in precisely
one position and with difference 1 in this position.

(ii) last(Wk+1,ℓ+1) and last(Wk,ℓ) are either both equal to last([b]), or they differ in precisely
one position and with difference 1 in this position.

(iii) If s = last(Wk+1,ℓ+1) differs from t = last(Wk,ℓ) in position i, then sj = tj ∈ {0, bj} for
all j 6= i.

(iv) last(Wk,ℓ) ∈ {last(Wk,k), last(Wℓ,ℓ), last([b])}.

Proof. (i): first(Wk,ℓ) is the lexicographically least tuple c ∈ [b] with ||c|| = max{0, k}, and
first(Wk+1,ℓ+1) the lexicographically least tuple d ∈ [b] with ||d|| = max{0, k + 1}, and the
result follows.
(ii): Suppose that last(Wk,ℓ) 6= last([b]) (that is, last([b]) 6∈ Wk,ℓ). The case last(Wk+1,ℓ+1) 6=
last([b]) (that is, last([b]) 6∈ Wk+1,ℓ+1) is similar.

• If 0 ≤ ℓ < b1, then
last(Wk,ℓ) = ℓ0 . . . 0

and
last(Wk+1,ℓ+1) = (ℓ + 1)0 . . . 0

3



and the statement follows.
• If ℓ ≥ b1 and b1 is odd, then

last(Wk,ℓ) = b1 · first(Wk−b1,ℓ−b1)

and
last(Wk+1,ℓ+1) = b1 · first(W b

′

k+1−b1,ℓ+1−b1
)

with b′ = b2b3 . . . bn. But first(W b
′

k−b1,ℓ−b1
) 6= 00 . . . 0, otherwise last(Wk,ℓ) = last([b]), and by (i)

of the present lemma the statement follows.
• If k ≥ b1 and b1 is even, then

last(Wk,ℓ) = b1 · last(W
b
′

k−b1,ℓ−b1
)

and
last(Wk+1,ℓ+1) = b1 · last(W

b
′

k+1−b1,ℓ+1−b1
).

But last(W b
′

k−b1,ℓ−b1
) 6= last([b′]), otherwise last(Wk,ℓ) = last([b]), and induction on n completes

the proof.
(iii) and (iv) are consequences of the proof of (ii).

If c ∈ Wk,ℓ and succ(c) ∈ Wk,ℓ, then succk,ℓ(c) = succ(c); otherwise, Proposition 1 below
states that, succk,ℓ(c) = succp,p(c) with p = ||c||. Before proving this proposition we need a
technical lemma.

Lemma 2. Let c, c′ ∈ Wk,ℓ with c′ = succk,ℓ(c) and let u be the leftmost position where c′i 6= ci.
Then we have either c′u = cu + 1 or c′u = cu − 1.

Proof. Let I ⊂ {1, 2, · · · n} be the set of indices i with c′i 6= ci. So, u is the minimal element of
I and suppose that c′u = cu + p for some p > 1; the case where c′u = cu − p is similar.
• If c′i > ci for all i ∈ I, then the tuple c′′ defined by

c′′i =

{
ci if i 6= u,

ci + 1 if i = u,

belongs to Wk,ℓ and is such that c ≺ c′′ ≺ c′ (actually, in this case c′′ = succ(c)). This is in
contradiction with c′ = succk,ℓ(c).
• If there exists v ∈ I, v > u, such that c′v = cv − r for some r ≥ 1, then the tuple c′′ defined by

c′′i =







ci if i 6= u, v,

ci + (p − 1) if i = u,

ci − (r − 1) if i = v,

belongs to Wk,ℓ and is such that c ≺ c′′ ≺ c′, which yields again a contradiction.

Proposition 1. Let c, c′ ∈ Wk,ℓ with c′ = succk,ℓ(c). Then one of the two statements below
holds.

(i) c′ = succ(c), and so c and c′ differ in precisely one position and with difference 1 in this
position,

4



(ii) ||c|| = ||c′||, and c and c′ differ in two positions and by +1 and −1 in these positions.

Proof. Let u be the leftmost position where c differs from c′. By Lemma 2, c′u = cu + α, with
α ∈ {−1, 1}.
If β =

∑u
i=1 ci is odd, then

c = c1c2 . . . cufirst(W b
′

k−β,ℓ−β)

and
c′ = c1c2 . . . (cu + α)first(W b

′

k+α−β,ℓ+α−β).

with b′ = bu+1bu+2 . . . bn. In this case, by Lemma 1 (i) we have either

• first(W b
′

k−β,ℓ−β) = first(W b
′

k+α−β,ℓ+α−β) = 00 . . . 0, and so c′ = succ(c) and (i) follows, or

• first(W b
′

k−β,ℓ−β) differs from first(W b
′

k+α−β,ℓ+α−β) in a single position and by −α in this
position and (ii) follows.

If β =
∑u

i=1 ci is even, then

c = c1c2 . . . culast(W b
′

k−β,ℓ−β)

and
c′ = c1c2 . . . (cu + α)last(W b

′

k+α−β,ℓ+α−β).

Now by applying Lemma 1 (ii) the result holds.

A consequence of the previous proposition and of its proof is the next corollary.

Corollary 1. Let c ∈ Wk,ℓ and c′ = succk,ℓ(c).

(i) If succ(c) ∈ Wk,ℓ, then c′ = succ(c),

(ii) If succ(c) 6∈ Wk,ℓ, then c′ = succp,p(c) with p = ||c||. In this case p = k or p = ℓ, and if
u and v, u < v, are the two positions where c and c′ differ, then ci = c′i ∈ {0, bi} for all
i > u, i 6= v.

Combining Proposition 1 and Corollary 1, we have:

Theorem 1. The list Wk,ℓ of tuples in the set Wk,ℓ listed in ≺ order is a Gray code where two
consecutive tuples differ in at most two positions and by 1 in these positions. In particular, Wk,k

is a Gray code for the b-bounded compositions of the integer k.

An alternative Gray code for Wk,ℓ is given by the next corollary.

Corollary 2. For k ≤ ℓ ≤ ||b||, the list

Wk,k, Wk+1,k+1, Wk+2,k+2, · · · , W ′
ℓ,ℓ

is a Gray code for the set Wk,ℓ, where W ′
ℓ,ℓ is Wℓ,ℓ or Wℓ,ℓ according as ℓ− k + 1 is odd or even.

Proof. By Theorem 1, for each i, k ≤ i ≤ ℓ, Wi,i is a Gray code for Wi,i. The last tuple of Wi,i

is last(Wi,i) and the first tuple of Wi+1,i+1 is last(Wi+1,i+1), and by Lemma 1 (ii) they differ in
precisely one position and with difference 1 in this position. Similarly, by Lemma 1 (i) the last
tuple of Wi,i and the first tuple of Wi+1,i+1 differ in the same way.

5



For example, for b = 44 ∈ N
2, we have the following Gray code lists for the set W3,4:

• W3,4 = 03, 04, 13, 12, 21, 22, 31, 30, 40, and

• W3,3, W4,4 = 03, 12, 21, 30, 40, 31, 22, 13, 04.

In the first list there are 3 transitions of size 2; in the second one there are 7 transitions of size
2. However, the list 04, 03, 13, 12, 22, 21, 31, 30, 40 for the same set is more restrictive since there
is no transition of size 2, and it can be considered ‘more optimal’. The existence of ‘minimal-
change lists’ in the general case remains an open problem, see the Acknowledgment at the end
of this paper.

As mentioned earlier, the set Wk,ℓ generalizes the notions of product set, unrestricted and
bounded compositions of an integer. The next remark says that this remains true in the ordered
case.

Remark 2. As particular cases we have:

• W0,||b|| is the Reflected Gray Code, Gn(b), for the product set [b] defined by (1) (cf. Er in
[1]), and which is generated looplessly by Williamson in [16, p. 112],

• if b = [k]n, then Wk,k is Knuth’s [16, 7] Gray code for unrestricted n-compositions of k,

• Wk,k becomes Walsh’s Gray code for b-bounded n-compositions of k, defined and generated
looplessly in [13].

For two lists A and B, A ⊂ B means that A is a (possibly scattered) sublist of B; in this
case the corresponding subsets satisfy A ⊂ B. With this notation we have

Remark 3. W b
u,v ⊂ W c

k,ℓ if [u, v] is a sub-interval of [k, ℓ] and b is componentwise smaller than

or equal to c. In particular, Wb

k,k ⊂ Wb

k,ℓ ⊂ Wb

0,||b|| = Gn(b).

4 Restricted permutations

There is a natural correspondence between the product set [0]×[1]×· · ·×[n−1] and the set Sn of
length-n permutations. Let Gn([0]× [1]×· · · × [n−1]) be the previous defined Gray code for the
product set [0]× [1]× · · · × [n− 1] and Sn its list-image through this correspondence. Lemma 4
says that Sn is a Gray code for Sn, which is actually the well known Johnson-Trotter-Steinhaus
Gray code for permutations [6, 11, 10]. Moreover, Proposition 2 and 3 say that the restriction
of Sn to some particular classes of permutations yields still a Gray code.

In a permutation τ ∈ Sn a couple (i, j) is an inversion if i < j but τ(i) > τ(j). The array
t = t1t2 . . . tn ∈ [0] × [1] × · · · × [n − 1] is the inversion table (see [9, p. 20]) of a permutation
τ ∈ Sn if, for any i, 1 ≤ i ≤ n,

ti = the number of elements in τ smaller than i and at its right.

Clearly, ||t|| is the number of inversions in the permutation τ , denoted inv τ ; it is also the
number of adjacent transpositions needed to sort the permutation τ .

6



Gn(b)
W2,4

W2,3 W4,4W2,2 W3,3

000

001

002 X

003 X

013 X

012 X

011 X

010

110 X

111 X

112 X

113

103 X

102 X

101 X

100

200 X

201 X

202 X

203

213

212

211 X

210 X

Table 1: The sets [b], W2,2, W3,3, W2,3, W4,4, W2,4 listed in ≺ order for n = 3 and b = 213 ∈ N
3.

7



For every n ∈ N, the function

φ : [0] × [1] × · · · × [n − 1] → Sn

defined by τ = φ(t) where t is the inversion table of τ , is a bijection from [0]× [1]× · · · × [n− 1]
into Sn.

If two permutations differ by an adjacent transposition, then their inversion tables differ in
precisely one position and with difference 1 in this position. Conversely, it is easy to see that
if two inversion tables differ in precisely one position and with difference 1 in this position,
then their corresponding permutations differ by the transposition of two elements, which are
not necessarily adjacent. For example, s = 011032 differs from t = 001032 in a single position
and 253614 = φ(s) differs from 153624 = φ(t) by a non adjacent transposition. However, under
additional constraints, the adjacency property is preserved.

Lemma 3. Let s, t ∈ [0] × [1] × [2] × [n − 1]. If there is an i ∈ {1, 2, . . . , n} with:

• ti = si + 1 and sj = tj for all j 6= i,

• sj = tj ∈ {0, j − 1} for all j > i,

then σ = φ(s) and τ = φ(t) differ by an adjacent transposition.

Proof. If i = n, then n is not on the leftmost position in σ, and τ is obtained from σ by
transposing n and the element at its left.
If i 6= n, then n is the leftmost or rightmost element of σ according as sn is n − 1 or 0, and
generally, any j, j > i, is the leftmost or rightmost element of the permutation obtained from σ

by deleting all elements larger than j. So, σ has the form

σ = σ1σ2 . . . σu
︸ ︷︷ ︸

>i

σu+1σu+2 . . . σu+i
︸ ︷︷ ︸

≤i

σu+i+1σu+i+2 . . . σn
︸ ︷︷ ︸

>i

with σu+1σu+2 . . . σu+i a permutation in Si with the inversion table s1s2 . . . si. Since si 6= i− 1,
i is not the leftmost element of σu+1σu+2 . . . σu+i, and (as in the case i = n) τ is obtained from
σ by transposing i and the element at its left.

We say that two permutations differ by an adjacent transposition if one can be obtained from
the other by transposing two adjacent elements.

By the previous lemma and Lemma 1 (iii) we have:

Lemma 4. If s and t are two successive tuples in Gn([0]×[1]×· · ·×[n−1]) then the permutations
φ(s) and φ(t) in Sn differ by an adjacent transposition, and so Sn is a Gray code for Sn.

Actually Sn is classical Johnson-Trotter-Steinhaus Gray code for the set of length n permu-
tations [6, 11, 10].

Proposition 2. The restriction of Sn to the set of permutations with a number of inversions
lying between two integers is a Gray code where two consecutive permutations differ by one or
two adjacent transpositions.

8



1432

3142 3214

2341 2413

4123

Figure 1: The graph with vertex set the permutations in S4 with 3 inversions and two permu-
tations are connected if they differ in three positions.

Proof. Let σ and τ be two consecutive permutations in the restriction of Sn to the set of
permutations with a number of inversions between k and ℓ. Let s and t be the corresponding
tuples in b = [0]× [1]× · · · × [n− 1] with φ(s) = σ and φ(t) = τ . By the definition of Sn, s and
t are consecutive in Wb

k,ℓ. So, by Proposition 1 either: t = succb(s) and in this case, by Lemma
4, σ differs from τ by an adjacent transposition; or s and t differ in two positions, say u and
v, u < v, and by +1 and −1 in these positions. In this last case according to Corollary 1 (ii)
si = ti ∈ {0, i − 1} for all i > u and i 6= v. We will show that σ and τ differ by two adjacent
transpositions.

Let σ′ and π′ be the permutations in Sv−1 with the transposition table s1s2 . . . sv−1 and
t1t2 . . . tv−1. By Lemma 3, σ′ and π′ differ by an adjacent transposition. Now, the permutations
σ′′ and π′′ in Sv with the transposition table s1s2 . . . sv−1sv and t1t2 . . . tv−1tv differ by two
adjacent transpositions. Indeed, σ′′ is obtained from σ′ by inserting v in the svth position from
right to left, and τ ′′ is the permutation obtained from τ ′ by inserting v in the tvth position from
right to left and, the rightmost position being position zero. Now, since si = ti ∈ {0, i − 1} for
i > v, it results that σ and τ differ as σ′′ and τ ′′, that is by two adjacent transpositions.

The previous proposition says that two consecutive permutations in the restriction of Sn

to the set of permutations with a number of inversions lying between two integers differ in at
most four positions. Remark that in general there is no more restrictive Gray code for this set.
Indeed, an example is given by the graph in Figure 1 which is not Hamiltonian (recall that a
Gray code corresponds to a Hamiltonian path in the induced graph).

A cycle in a permutation π ∈ Sn is a sequence (a0a1 . . . aj−1) such that π(ai) = a(i+1) mod j

for all i, 0 ≤ i ≤ j − 1. Any permutation is the union of disjoint cycles. For example, the
permutation π = 425 1 7 6 3 ∈ S7 is the union of four cycles, namely (4 1), (2), (5 7 3) and (6).

A permutation is called even (resp. odd) if it has an even (resp. odd) number of inver-
sions. The set of even permutations forms a subgroup of Sn denoted by An and it is called the
alternating group. Its cardinality is n!

2 .

9



Proposition 3. The restriction of Sn to the following sets yields Gray codes where two consec-
utive permutations differ by two adjacent transpositions:

1. The set of even permutations;

2. The set of odd permutations;

3. The set of permutations with an even number of cycles;

4. The set of permutations with an odd number of cycles.

Proof. For the point 1 and 2 the proof is based on the following remark: if s is the successor of
r, and t that of s, in the list Gn([0]× [1]×· · · × [n− 1]), then ||r|| and ||t|| have the same parity.
The permutations φ(r) and φ(t) differ by two adjacent transpositions, and have the same parity.

For the point 3 and 4 the proof is similar to that of the point 1 and 2 and is based on the
following remark: a transposition (not necessarily adjacent) in a permutation glues two cycles
in a single one, or splits one cycle in two ones.

Acknowledgment

The authors would like to thank one of the anonymous referees for helpful suggestions and for
providing the open problem following Corollary 2.

References

[1] M.C. Er, On generating the N -ary reflected Gray code, IEEE Transaction on computers,
33(8), 739–741, 1984.

[2] G. Blin, M. Crochemore, S. Hamel and S. Vialette, Finding the median of three permuta-
tions under the Kendall-τ distance, Permutation Patterns 2009 Firenze, 13-17 July 2009,
31–36.

[3] S. Effler, F. Ruskey, A CAT algorithm for generating permutations with a fixed number of
inversions, Information Processing Letters, 86, 107-112, 2003.

[4] F. Gray, Pulse code communication, U.S. Patent 2632058 (1953).

[5] J. Joichi, D. E. White and S. G. Williamson, Combinatorial Gray codes, Siam J. on Com-
puting, 9, 130–141, 1980.

[6] S.M. Johnson, Generation of permutations by adjacent transpositions, Math. Comp., 17,
282–285, 1963.

[7] P. Klingsberg, A Gray Code for compositions, Journal of Algorithms, 3 (1), 41–44, 1981.

[8] D.E. Knuth, The Art of Computer Programming, vol 4, Addison Wesley, 2005.

[9] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge,
England, 1997.

10



[10] H. Steinhaus, One hundred problems in elementary mathematics, Dover Publications 1979
(In Polish 1958).

[11] H.F. Trotter, Perm (Algorithm 115), Comm. ACM, 5(8), 434–435, 1962.

[12] V. Vajnovszki and T. Walsh, A loop-free two-close Gray code algorithm for listing k-ary
Dyck words, Journal of Discrete Algorithms, 4(4), 633-648, 2006.

[13] T. Walsh, Loop-free sequencing of bounded integer compositions, Journal of Combinatorial
Mathematics and Combinatorial Computing, 33, 323-345, 2000.

[14] T. Walsh, Generating Gray codes in O(1) worst-case time per word, 4th Discrete Mathe-
matics and Theoretical Computer Science Conference, Dijon-France, 7-12 July 2003 (LNCS
2731, 71–88).

[15] H. S. Wilf, Combinatorial algorithms: an update, SIAM, Philadelphia, 1989.

[16] S. G. Williamson, Combinatorics for computer science, Computer Science Press, Rockville,
Maryland 1985.

[17] A.J. van Zanten, The ranking problem of a Gray code for compositions, Ars Combinatoria,
41, 257–268, 1995.

11


