
LOOP-FREE GRAY CODE ALGORITHM FOR THE e-RESTRICTED GROWTH

FUNCTIONS

TOUFIK MANSOUR, GHALIB NASSAR, AND VINCENT VAJNOVSZKI

Abstract

The subject of Gray codes algorithms for the set partitions of {1, 2, . . . , n} had been covered in several
works. The first Gray code for that set was introduced by Knuth [3], later, Ruskey presented a
modified version of Knuth’s algorithm with distance two, Ehrlich [5] introduced a loop-free algorithm
for the set of partitions of {1, 2, . . . , n}, Ruskey and Savage [16] generalized Ehrlich’s results and give
two Gray codes for the set of partitions of {1, 2, . . . , n}, and recently, Mansour et al. [11] gave another
Gray code and loop-free generating algorithm for that set by adopting plane tree techniques.

In this paper, we introduce the set of e-restricted growth functions (a generalization of restricted
growth functions) and extend the aforementioned results by giving a Gray code with distance one for
this set; and as a particular case we obtain a new Gray code for set partitions in restricted growth
function representation. Our Gray code satisfies some prefix properties and can be implemented by a
loop-free generating algorithm using classical techniques; such algorithms can be used as a practical
solution of some difficult problems. Finally, we give some enumerative results concerning the restricted
growth functions of order d.

Keywords: Gray codes, Loop-free algorithms, Partitions, e-restricted growth functions

2000 Mathematics Subject Classification: Primary 05A05, 94B25, Secondary: 05A15

1. introduction

A Gray code for a combinatorial class is a listing of its objects in which only “small change” takes
place between any two consecutive objects and does not depend on the size of the objects; the “small
change” is considered with respect to the Hamming distance and it depends on the particular family.
A d-Gray code is a Gray code such that the Hamming distance between any two consecutive objects
is at most d. Several authors introduced Gray codes for permutations [6, 19], involutions [22], fixed-
point free involutions [22], derangements [4], permutations with a fixed number of cycles [1], and
partitions of a set [5, 16, 11]. A generating algorithm which takes only a constant amount of time
between consecutive objects of a combinatorial class is said to be loop-free. The notion of loop-free
algorithms was first formulated by Ehrlich [5]. Nowadays one can find many loop-free algorithms
for various combinatorial classes such as permutations [5], multiset permutations [20], set partitions
[5, 11], compositions [13] and others.

A restricted growth function of length n is an integer sequence π = π1π2 · · ·πn such that π1 = 1
and πi+1 ≤ max{π1, . . . , πi} + 1, for all 1 ≤ i ≤ n − 1 (see for example [18]). There is a bijection
between the set of restricted growth functions π1π2 · · ·πn of length n and the set of partitions of

1



2 TOUFIK MANSOUR, GHALIB NASSAR, AND VINCENT VAJNOVSZKI

{1, 2, . . . , n}, namely: π1π2 · · ·πn 7→ B1/B2/ · · · /Bk if and only if πj = i implies j ∈ Bi; or, conversely,
B1/B2/ · · · /Bk 7→ π1π2 · · ·πn if and only if j ∈ Bi implies πj = i. We consider a natural extension of
this definition.

Definition 1. Let e = e1e2 . . . en be a length-n integer sequence with e1 = 0 and ei ≥ 1 for i ≥ 2.
An e-restricted growth function is a sequence π = π1π2 . . . πn with

• π1 = 1, and
• 1 ≤ πi ≤ ei + max{π1, π2, . . . , πi−1}, for 2 ≤ i ≤ n.

In particular, if there exists an integer d such that e2 = e3 = . . . = en = d, then π is called restricted

growth function of order d. Thus the standard restricted growth functions correspond to the restricted
growth functions of order d = 1. For a given integer n and an integer sequence e as in Definition 1 we
denote by Pe,n the set of e-restricted growth functions; and for an integer d we denote by Pd,n the set
of restricted growth function of order d; and so, the standard restricted growth function set is P1,n,
see [18].

2. Gray code for Pe,n

Our main goal in this section is to give a Gray code, with distance 1, for Pe,n. By mean of a generating
algorithm we define a list, Le,n, for the set Pe,n and we will show that the obtained list is a Gray
code.

A list for a set of sequences is prefix partitioned if all sequences in the list having the same prefix
are consecutive. Our strategy in the construction of a prefix partitioned Gray code for Pe,n is the
following. We assign to each position of a sequence in Pe,n a status: active or inactive; and initially all
positions—except the leftmost one—are active. After the initialization step, the algorithm repeatedly
does on the current sequence π in Pe,n the following:

• find the rightmost active position i in π;
• change appropriately the ith element in π and output π;
• if all prefixes of the form π1π2 . . . πi−1x have been obtained, then set position i inactive;
• set all positions at the right of i active.

For a given prefix π1π2 . . . πi−1 the algorithm above sketched will exhaust all possible values for
πi ∈ {1, 2, . . . , m}, with m = ei + max{π1, π2, . . . , πi−1} in an appropriate order. Now we define two
such orders on the set {1, 2, . . . , m} depending on a parameter f ∈ {1, 2}, called direction. For an
integer m ≥ 2 let define the ordering succf,m on the set {1, 2, . . . , m} by

(1) succf,m(x) =







m, if x = f and (m > 2 or f = 1);
x − 1, if x 6= f and x − 1 6= f and x > 2;
1, if f = 2 and (m = 2 or x = 3).

For example, the successive elements of the set {1, 2, . . . , m} are

• listed in succ1,m order: 1, m, m − 1, . . . , 2, and
• listed in succ2,m order: 2, m, m − 1, . . . , 3, 1.

The implementation of the above algorithm needs three auxiliary array: f = f1f2 . . . fn, m =
m1m2 . . . mn and a = a1a2 . . . an; the meaning of them is given below.



LOOP-FREE GRAY CODE ALGORITHM FOR THE e-RESTRICTED GROWTH FUNCTIONS 3

• fi is the direction of the next change of πi. Initially fi = 1 for all i,
• mi is the largest value of πi considering the prefix π1π2 . . . πi−1 fixed; that is mi = ei +

max{π1, π2, . . . , πi−1}. Initially mi = ei + 1 for all i.
• ai is 0 or 1 according as i is an active position or not in π. Initially ai = 1 for all i, except

a1 = 0.

Let denote by Le,n the list produced by the previous algorithm. Now we give a more formal expression
of this algorithm, which after the initialization stage of the auxiliary arrays as above and of π by 11 . . .1
performs

output π
while not all ai are zeros do

NEXT
output π

enddo

The procedure NEXT is given below and computes the successor of a sequence π in Pe,n and updates
arrays a, m and f .

global array: π, a, f, m, e
procedure NEXT
local: i, j
i := max1≤j≤n{j | aj = 1} /* i is the rightmost active position in π*/
πi := succfi,mi+ei

(πi)
if πi = 1 and fi = 2 or πi = 2 and fi = 1 /* πi is the last value in its direction */
then ai := 0 /* set position i inactive */

fi := πi /* change the direction of πi */
endif

for j from i + 1 to n do

aj := 1 /* set active all positions at the right of i */
mj := max(mi−1, πi)

enddo

end procedure

Because of the research of the largest i with ai = 1 and of the inner loop for this generating algorithm
is not efficient in general. At the end of this section we will explain how using general known techniques
it can be implemented by a loop-free algorithm, and so efficiently.

A sequence π′ = π1π2 . . . πj , 1 ≤ j < n, is an admissible proper prefix for Pe,n if there is (at least) a
sequence in Pe,n with the prefix π′. For a given admissible proper prefix π′ our algorithm produces
sequences with prefix π′x for all x ∈ {1, 2, . . . , ei + max{π1, π2, . . . , πi−1}}. Iteratively applying this
fact we have that the list Le,n defined by the previous algorithm is an exhaustive list for the set Pe,n.
In addition, since a single element is changed in the current sequence (by the procedure NEXT) in
order to obtain its successor, we have

Proposition 2. The list Le,n is a 1-Gray code for the set Pe,n, that is, two consecutive sequences in

Le,n differ in exactly one position.

By construction first(Le,n) = 1111 . . .1, and if ℓ1ℓ2 . . . ℓn = last(L
e,n), then ℓ1 = 1, and ℓi ∈ {1, 2} for

i ≥ 2. For example:



4 TOUFIK MANSOUR, GHALIB NASSAR, AND VINCENT VAJNOVSZKI

• for e = 02322, last(L
e,5) = 12221;

• for e = 01111, last(L
e,5) = last(L1,5) = 12121, see Table 2;

• for e = 03333, last(L
e,5) = 12111.

T. Walsh gave in [23] a general generating algorithm for Gray code lists L satisfying the following two
properties:

• sequences with the same prefix are consecutive (that is, the list is prefix partitioned);
• for each proper prefix π1π2 · · ·πi of a sequence in L there are at least two values a and b such

that π1π2 · · ·πia and π1π2 · · ·πib are both prefixes of sequences in L.

Our Gray code list Le,n satisfies Walsh’s previous desiderata and so it can be generated by a loop-free
algorithm by applying his general method. See also [21] where is given a general technique for the loop-
free generation of particular subsets of the product space. Alternatively, a loop-free implementation
can be obtained by using the finished and unfinished lists method, introduced in [14].

1 1 1 1 1 11 1 3 2 3 21 1 3 3 4 31 1 2 3 2
2 1 1 1 3 12 1 3 2 2 22 1 3 3 3 32 1 2 3 5
3 1 1 1 2 13 1 3 4 2 23 1 3 3 2 33 1 2 3 4
4 1 1 2 2 14 1 3 4 6 24 1 3 1 2 34 1 2 3 3
5 1 1 2 4 15 1 3 4 5 25 1 3 1 3 35 1 2 3 1
6 1 1 2 3 16 1 3 4 4 26 1 3 1 1 36 1 2 2 1
7 1 1 2 1 17 1 3 4 3 27 1 2 1 1 37 1 2 2 4
8 1 3 2 1 18 1 3 4 1 28 1 2 1 4 38 1 2 2 3
9 1 3 2 5 19 1 3 3 1 29 1 2 1 3 39 1 2 2 2
10 1 3 2 4 20 1 3 3 5 30 1 2 1 2

Table 1. The 39 sequences in the list Le,4 with e = 0212.

1 1 1 1 1 1 13 1 1 2 1 1 25 1 2 3 2 1 37 1 2 3 3 2
2 1 1 1 1 2 14 1 1 2 1 2 26 1 2 3 2 4 38 1 2 3 1 2
3 1 1 1 2 2 15 1 2 2 1 2 27 1 2 3 2 3 39 1 2 3 1 3
4 1 1 1 2 3 16 1 2 2 1 3 28 1 2 3 2 2 40 1 2 3 1 1
5 1 1 1 2 1 17 1 2 2 1 1 29 1 2 3 4 2 41 1 2 1 1 1
6 1 1 2 2 1 18 1 2 2 3 1 30 1 2 3 4 5 42 1 2 1 1 2
7 1 1 2 2 3 19 1 2 2 3 4 31 1 2 3 4 4 43 1 2 1 2 2
8 1 1 2 2 2 20 1 2 2 3 3 32 1 2 3 4 3 44 1 2 1 2 3
9 1 1 2 3 2 21 1 2 2 3 2 33 1 2 3 4 1 45 1 2 1 2 1
10 1 1 2 3 4 22 1 2 2 2 2 34 1 2 3 3 1
11 1 1 2 3 3 23 1 2 2 2 3 35 1 2 3 3 4
12 1 1 2 3 1 24 1 2 2 2 1 36 1 2 3 3 3

Table 2. The 45 restricted growth functions of length 5 in L1,5.



LOOP-FREE GRAY CODE ALGORITHM FOR THE e-RESTRICTED GROWTH FUNCTIONS 5

3. Enumeration restricted growth function of order d

Let pn,d,k be the number of restricted growth functions π = π1π2 · · ·πn of order d of length n such
that maxi∈{1,2,...,n} πi = k. We define Pd,k(x) =

∑

n≥0 pn,d,kxn to be the generating function for the
sequence pn,d,k according to the first parameter. Since each restricted growth function π of order d
with maxi∈{1,2,...,n} πi = k can be decomposed as π = π′kπ′′, where π′′ is any sequence of integers in
{1, 2, . . . , k} and π′ is a restricted growth function of order d such that the largest entry in π′ is in
the set {k − d, k − d + 1, . . . , k − 1}. Hence, the generating function Pd,k(x) satisfies the recurrence
relation

Pd,k(x) =
x

1 − kx
(Pd,k−1(x) + Pd,k−2(x) + · · · + Pd,k−d(x))(2)

with the initial conditions Pd,k(x) = 0 for all k < 1 and Pd,1(x) = x
1−x

.

Theorem 3. The generating function Pd,k(x) is given by

∑

1 = i1 < i2 < · · · < is = k,

ij − ij−1 ≤ d, j = 2, 3, . . . , s

xs

(1 − i1x) · · · (1 − isx)
.

Proof. We proceed the proof by induction on k. Clearly, the theorem holds for k < 0 and k = 1. If
we assume that the theorem holds k < ℓ, then by (2) we obtain

Pd,k(x) =
x

1 − kx

k−1
∑

j=k−d









∑

1 = i1 < i2 < · · · < is = ℓ,

iℓ − iℓ−1 ≤ d, ℓ = 2, 3, . . . , s

xs

(1 − i1x) · · · (1 − isx)









=
∑

1 = i1 < i2 < · · · < is+1 = k,

iℓ − iℓ−1 ≤ d, ℓ = 2, 3, . . . , s + 1

xs+1

(1 − i1x) · · · (1 − is+1x)

=
∑

1 = i1 < i2 < · · · < is = k,

iℓ − iℓ−1 ≤ d, ℓ = 2, 3, . . . , s

xs

(1 − i1x) · · · (1 − isx)
,

as claimed. �

As a corollary of the above theorem we obtain that the generating function for the number of restricted
growth functions of order d and of length n is given by

Pd(x) = 1 +
∑

k≥1









∑

1 = i1 < i2 < · · · < is = k,

iℓ − iℓ−1 ≤ d, ℓ = 2, 3, . . . , s

xs

(1 − i1x) · · · (1 − isx)









.

For instance, if d = 1 then

P1(x) = 1 +
∑

k≥1

xk

(1 − x) · · · (1 − kx)
,

which is the ordinary generating function for the number of set partitions of {1, 2, . . . , n}, see [18].



6 TOUFIK MANSOUR, GHALIB NASSAR, AND VINCENT VAJNOVSZKI

References

[1] J.-L. Baril, Gray code for permutations with a fixed number of cycles, Disc. Math. 307:13 (2007) 1559–1571.
[2] J.R. Bitner, G. Ehrlich and E.M. Reingold, Efficient generation of the binary reflected Gray code and its applica-

tions, Commun. ACM, 19(9):517–521, 1976.
[3] D.E. Knuth, The art of computer programming, Vol. 1, Fundamental algorithms, Addison-Wesley, Reading,

Mass.-London-Amsterdam, 1975.
[4] J.-L. Baril and V. Vajnovszki, Gray code for derangements, Disc. App. Math. 140 (2004) 207–221.
[5] G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other combinatorial configura-

tions, J. Assoc. Comput. Mach. 20 (1973) 500–513.
[6] S.M. Johson, Generating of permutations by adjacent transposition, Math. Comput. 17 (1963) 282–285.
[7] J.M. Lucas, D. Roelants van Baronnaigien and F. Ruskey, On rotations and the generation of binary trees, J.

Algorithms 15 (1993) 343–366.
[8] M. Klazar, On abab-free and abba-free set partitions, Europ. J. Combin. 17 (1996) 53–68.
[9] C.W. Ko and F. Ruskey, Generating permutations of a bag by interchanges, Inform. Processing Lett. 41 (1992)

263–269.
[10] J.F. Korsh and S. Lipschutz, Generating multiset permutations in constant time, J. Algorithms 25 (1997) 321–335.
[11] T. Mansour and G. Nassar, Gray codes, loopless algorithm and partitions, J. Math. Model Algor. 7.3 (2008)

291–310.
[12] T. Mansour and G. Nassar, Up-staircase words, generating and enumeration, to appear.
[13] T. Mansour and G. Nassar, Loop-free Gray code algorithms for the set of compositions, J. Math. Model Algor. 9

2010 343–356.
[14] J.M. Lucas, D.R. van Baronaigien and F. Ruskey, On rotations and the generation of binary trees, J. Algorithms

15 (1993) 1–24.
[15] F. Ruskey, Combinatorial generation, see http://www.cs.sunysb.edu/ algo-

rith/implement/ruskey/implement.shtml.
[16] F. Ruskey and C.D. Savage, Gray codes for set partitions and restricted growth tails, Aust. J. Combin. 10 (1994)

85–96.
[17] R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, England, 1997.
[18] D. Stanton and D. White, Constructive Combinatorics, Springer, 1986.
[19] H.F. Trotter, Algorithm 115, permutations, Comm. ACM 5 (1962) 434–435.
[20] V. Vajnovszki, A loopless algorithm for generating the permutations of a multiset, Theoret. Comput. Sci. 307

(2003) 415–431.
[21] V. Vajnovszki, On the loopless generation of binary tree sequences, Inform. Processing Lett. 68 (1998) 113–117.
[22] T. Walsh, Gray codes for involutions, J. Combin. Math. Combin. Comput. 36 (2001) 95–118.
[23] T. Walsh, Generating Gray codes in O(1) worst-case time per word, 4th Discrete Mathematics and Theoretical

Computer Science Conference, Dijon-France, 7-12 July 2003 (LNCS 2731, 71–88).

Department of Mathematics, University of Haifa, 31905 Haifa, Israel

E-mail address: toufik@math.haifa.ac.il

Department of Mathematics, University of Haifa, 31905 Haifa, Israel

E-mail address: nassar ghalib@hotmail.com

LE2I, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France

E-mail address: vvajnov@u-bourgogne.fr


