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Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010
1100

4/23



Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010
1100

4/23



Efficient generation of some greedy Gray codes

Homogeneous transposition

0100110000101
0100111000001

Homogeneous transposition
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Homogeneous transposition

0100110000101 0100110000101
0100111000001 0101110000001

Homogeneous transposition Non homogeneous transposition

Let S be a set of same length and same weight binary words.

Definition
A homogeneous Gray code for S is a list containing every word of S ,
such that two consecutive words differ by a homogeneous transposition.
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The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm
1 Initialize the list L with a particular word in S .
2 For the last word in L, homogeneously transposes the leftmost

possible 1 with the leftmost possible 0, such that the obtained
word is in S but not in L.

3 If at point 2. a new word is obtained, then append it to the list L
and return to point 2.

This definition is a specialisation of that introduced in
[Aaron Williams, The greedy Gray code algorithm, 2013]

This algorithm is not suitable for efficiently generating Gray codes since it
may need to “remember” an exponential number of objects
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Questions

• Which classes of binary words this algorithm
generates ?

• Which first words generate the whole class ?
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• The greedy Gray code algorithm

• Restricted classes of binary words

• Efficient generation

9/23



Efficient generation of some greedy Gray codes

Fibonacci words

Definition
Let Fn(k) be the set of length n and weight k binary words that do not
have two consecutive 1’s.

|Fn(k)| =
(
n − k + 1

k

)
.

Example:
F5(2) = [00101, 01001, 01010, 10001, 10010, 10100].
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Generalised Dyck prefixes

Definition
Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k

|Cn(0, k)| =
(
n

k

)
C2n(1, n) is the set of length 2n Dyck words

|Cn(1, k)| =
1

n + 1

(
2n
n

)
C3n(2, n) is in bijection with size 3n ternary trees.
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The set C8(1, 4) of Dyck words of length 8

01010101 00101011
00110101 00110011
00101101 01010011
01001101 01000111
00011101 00100111
00011011 00010111
01001011 00001111
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Generators

Definition
For α ∈ S , we denote by S(α) the list obtained by applying the greedy
algorithm for S , starting with α.

In addition, if S(α) contains each
binary word in S , then α is called a generator.

Proposition
The lexicographic smallest possible binary word and the lexicographic
largest possible binary word are generators for Fn(k) and for Cn(p, k).
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• The greedy Gray code algorithm

• Restricted classes of binary words

• Efficient exhaustive generation
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Generation algorithms

Exhaustive generation algorithms are developed in computer science for
verification purposes, in statistical physics for computer experimentation,
or in bio-informatics to assess statistical significance of weak signals.

An exhaustive generation algorithms is optimal if it runs in constant
average time (it is a CAT algorithm).
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Recursive tail partitioned lists

The tail of a binary word is its unique suffix of the form 011···1

Definition
L is a recursive tail partitioned list if it has the form

L = L1 · 01u,L2 · 01u+1,L3 · 01u+2, · · · ,Lℓ+1 · 01u+ℓ

or the form

L = L1 · 01u+ℓ,L2 · 01u+ℓ−1,L3 · 01u+ℓ−2, · · · ,Lℓ+1 · 01u

for some u, ℓ ≥ 0, and each list Li , is in turn recursive tail partitioned.
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Recursive tail partitioned lists

Theorem
If L is a list of same length and same weight binary words and it is

a homogeneous Gray code, and
suffix partitioned,

then L is recursive tail partitioned.
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The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).
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CAT generation for a homogeneous Gray code for
Cn(p, k)

procedure pref(m, j)
if m = (p + 1)j then

if p = 0 then return
end if
m← m − 1 ; j ← j − 1

end if
if Sj < m then # Increasing tail

for i = 0 to j − 1 do # i is the number of 1’s in the tail
pref(m − i − 1, j − i)
Sj−i ← m − i
print(S)

end if
if Sj = m then # Decreasing tail

for i = j − 1 downto 0 do # i is the number of 1’s in the tail
Sj−i ← max(Sj−i−1 + 1, (p + 1)(j − i))
print(S)
pref(m − i − 1, j − i)

end if
end procedure
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the main call is pref(n, k), it generates Cn(p, k)

Si is the position of the ith 1 in the word
table S and the parameter p are global
S is initialized as Si ← (p + 1)i for 1 ≤ i ≤ k

20/23



Efficient generation of some greedy Gray codes

Algorithm analysis

With a classical complexity analysis, we can obtain the following result

Proposition
The call pref(n, k) generates the homogeneous greedy Gray code for
Cn(p, k) efficiently.

See [Frank Ruskey, Combinatorial Generation Book].
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Thank you !
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