Efficient generation of some greedy Gray codes

Vincent Vajnovszki joint work with Nathanaël Hassler and Dennis Wong Laboratoire d'Informatique de Bourgogne & Macao Polytechnic University

2024 KMS Annual Meeting October 24–26th Suwon, Republic of Korea

Overview

- The greedy Gray code algorithm
- Restricted classes of binary words

(日) (四) (三) (三) (三) (三)

• Efficient exhaustive generation

• The greedy Gray code algorithm

- Restricted classes of binary words
- Efficient generation

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

イロン イロン イヨン イヨン 三日

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

ヘロン ヘロン ヘビン ヘビン

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

ヘロン ヘロン ヘビン ヘビン

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

000	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	<mark>10</mark> 01
<mark>0</mark> 10	<mark>01</mark> 01
11 <mark>0</mark>	
1 <mark>1</mark> 1	
10 <mark>1</mark>	
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

00 <mark>0</mark>	
001	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	01 <mark>01</mark>
11 <mark>0</mark>	
1 <mark>1</mark> 1	
10 <mark>1</mark>	
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

000	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	01 <mark>0</mark> 1
11 <mark>0</mark>	01 <mark>1(</mark>
1 <mark>1</mark> 1	
10 <mark>1</mark>	
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

00 <mark>0</mark>	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	0101
11 <mark>0</mark>	<mark>01</mark> 10
1 <mark>1</mark> 1	
10 <mark>1</mark>	
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

000	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	0101
11 <mark>0</mark>	<mark>01</mark> 10
1 1 1	<mark>10</mark> 10
10 <mark>1</mark>	
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

000	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	0101
11 <mark>0</mark>	0110
1 1 1	1 <mark>01</mark> 0
10 <mark>1</mark>	
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

000	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	0101
11 <mark>0</mark>	0110
1 <mark>1</mark> 1	1 <mark>01</mark> 0
10 <mark>1</mark>	1 <mark>10</mark> 0
100	

A **Gray code** for a class of combinatorial objects is a list that contains each object from the class exactly once, such that any two consecutive objects in the list differ only by a 'small change'.

000	
0 <mark>0</mark> 1	0011
01 <mark>1</mark>	1001
<mark>0</mark> 10	0101
110	0110
1 <mark>1</mark> 1	1010
10 <mark>1</mark>	1100
100	

Efficient generation of some greedy Gray codes

Homogeneous transposition

$\begin{array}{c} 0100110000101 \\ 0100111000001 \end{array}$

Homogeneous transposition

Efficient generation of some greedy Gray codes

Homogeneous transposition

0100110000101 0100111000001

0100110000101 0101110000001

Homogeneous transposition Non homogeneous transposition

Homogeneous transposition

$\begin{array}{c} 0100110000101\\ 0100111000001 \end{array}$

010<mark>0</mark>110000<mark>1</mark>01 0101110000<mark>0</mark>01

Homogeneous transposition Non homogeneous transposition

Let S be a set of same length and same weight binary words.

Definition

A homogeneous Gray code for S is a list containing every word of S, such that two consecutive words differ by a homogeneous transposition.

The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm

- Initialize the list \mathcal{L} with a particular word in S.
- For the last word in *L*, homogeneously transposes the leftmost possible 1 with the leftmost possible 0, such that the obtained word is in *S* but not in *L*.
- If at point 2. a new word is obtained, then append it to the list L and return to point 2.

This definition is a specialisation of that introduced in [Aaron Williams, The greedy Gray code algorithm, 2013]

The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm

- Initialize the list \mathcal{L} with a particular word in S.
- For the last word in *L*, homogeneously transposes the leftmost possible 1 with the leftmost possible 0, such that the obtained word is in *S* but not in *L*.
- If at point 2. a new word is obtained, then append it to the list L and return to point 2.

This definition is a specialisation of that introduced in [Aaron Williams, The greedy Gray code algorithm, 2013]

This algorithm is not suitable for efficiently generating Gray codes since it may need to "remember" an exponential number of objects

	0011
1001 0101 0011	1001
	0101
	0110
	1010
	1100

	0011
1001	1001
0101 0011	0101
	0110
	1010
	1100

Questions

• Which classes of binary words this algorithm generates ?

• Which first words generate the whole class?

(日) (四) (三) (三) (三) (三)

• The greedy Gray code algorithm

- Restricted classes of binary words
- Efficient generation

Fibonacci words

Definition

Let $F_n(k)$ be the set of length n and weight k binary words that do not have two consecutive 1's.

$$|F_n(k)| = \binom{n-k+1}{k}.$$

イロン イロン イヨン イヨン 三日

Example: $F_5(2) = [00101, 01001, 01010, 10001, 10010, 10100].$

Definition

Let $C_n(p, k)$ be the set of length *n* and weight *k* binary words with the property that any prefix contains at least *p* times as many 0's as 1's.

$$|C_n(p,k)| = \binom{n}{k} - p\binom{n}{k-1}.$$

ヘロト ヘロト ヘヨト ヘヨト

Definition

Let $C_n(p, k)$ be the set of length *n* and weight *k* binary words with the property that any prefix contains at least *p* times as many 0's as 1's.

$$|C_n(p,k)| = \binom{n}{k} - p\binom{n}{k-1}.$$

Example:

• $C_n(0, k)$ is the set of length *n* binary words of weight *k*

$$|C_n(0,k)| = \binom{n}{k}$$

ヘロト ヘロト ヘヨト ヘヨト

Definition

Let $C_n(p, k)$ be the set of length *n* and weight *k* binary words with the property that any prefix contains at least *p* times as many 0's as 1's.

$$|C_n(p,k)| = \binom{n}{k} - p\binom{n}{k-1}.$$

Example:

• $C_n(0, k)$ is the set of length *n* binary words of weight *k*

$$|C_n(0,k)| = \binom{n}{k}$$

• $C_{2n}(1, n)$ is the set of length 2n Dyck words

$$|C_n(1,k)| = \frac{1}{n+1} \binom{2n}{n}$$

Definition

Let $C_n(p, k)$ be the set of length *n* and weight *k* binary words with the property that any prefix contains at least *p* times as many 0's as 1's.

$$|C_n(p,k)| = \binom{n}{k} - p\binom{n}{k-1}.$$

Example:

• $C_n(0, k)$ is the set of length *n* binary words of weight *k*

$$|C_n(0,k)| = \binom{n}{k}$$

• $C_{2n}(1, n)$ is the set of length 2n Dyck words

$$|C_n(1,k)| = \frac{1}{n+1} \binom{2n}{n}$$

• $C_{3n}(2, n)$ is in bijection with size 3n ternary trees.

The set $C_8(1,4)$ of Dyck words of length 8

01010101	00101011
00110101	00110011
00101101	01010011
01001101	01000111
00011101	00100111
00011011	00010111
01001011	00001111

Generators

Definition

For $\alpha \in S$, we denote by $S(\alpha)$ the list obtained by applying the greedy algorithm for S, starting with α .

イロン イヨン イヨン トヨ

Generators

Definition

For $\alpha \in S$, we denote by $S(\alpha)$ the list obtained by applying the greedy algorithm for S, starting with α . In addition, if $S(\alpha)$ contains each binary word in S, then α is called a *generator*.

Proposition

The lexicographic smallest possible binary word and the lexicographic largest possible binary word are generators for $F_n(k)$ and for $C_n(p, k)$.

- The greedy Gray code algorithm
- Restricted classes of binary words

(日) (四) (三) (三) (三) (三)

• Efficient exhaustive generation

Generation algorithms

Exhaustive generation algorithms are developed in computer science for verification purposes, in statistical physics for computer experimentation, or in bio-informatics to assess statistical significance of weak signals.

An exhaustive generation algorithms is optimal if it runs in constant average time (it is a CAT algorithm).

Recursive tail partitioned lists

The tail of a binary word is its unique suffix of the form $011 \cdots 1$

Recursive tail partitioned lists

The tail of a binary word is its unique suffix of the form 011...1

Definition \mathcal{L} is a *recursive tail partitioned* list if it has the form

$$\mathcal{L} = \mathcal{L}_1 \cdot 01^u, \mathcal{L}_2 \cdot 01^{u+1}, \mathcal{L}_3 \cdot 01^{u+2}, \cdots, \mathcal{L}_{\ell+1} \cdot 01^{u+\ell}$$

or the form

$$\mathcal{L} = \mathcal{L}_1 \cdot 01^{u+\ell}, \mathcal{L}_2 \cdot 01^{u+\ell-1}, \mathcal{L}_3 \cdot 01^{u+\ell-2}, \cdots, \mathcal{L}_{\ell+1} \cdot 01^u$$

for some $u, \ell \geq 0$, and each list \mathcal{L}_i , is in turn recursive tail partitioned.

Recursive tail partitioned lists

Theorem

If \mathcal{L} is a list of same length and same weight binary words and it is a homogeneous Gray code, and suffix partitioned,

(日) (四) (三) (三) (三) (三)

then $\ensuremath{\mathcal{L}}$ is recursive tail partitioned.

CAT generation for a homogeneous Gray code for $C_n(p, k)$

```
procedure pref(m,j)
   if m = (p+1)i then
       if p = 0 then return
       end if
       m \leftarrow m - 1; j \leftarrow j - 1
   end if
   if S_i < m then # Increasing tail
       for i = 0 to j - 1 do # i is the number of 1's in the tail
            pref(m-i-1, j-i)
            S_{i-i} \leftarrow m-i
            print(S)
   end if
   if S_i = m then \# Decreasing tail
       for i = j - 1 downto 0 do # i is the number of 1's in the tail
            S_{i-i} \leftarrow \max(S_{i-i-1}+1, (p+1)(i-i))
            print(S)
            pref(m-i-1, j-i)
   end if
end procedure
```

イロト 不得下 イヨト イヨト 一日

- the main call is pref(n, k), it generates $C_n(p, k)$
- S_i is the position of the *i*th 1 in the word
- table S and the parameter p are global
- S is initialized as $S_i \leftarrow (p+1)i$ for $1 \le i \le k$

Algorithm analysis

With a classical complexity analysis, we can obtain the following result

Proposition

The call pref(n, k) generates the homogeneous greedy Gray code for $C_n(p, k)$ efficiently.

See [Frank Ruskey, Combinatorial Generation Book].

Biblio

A. Bultena and F. Ruskey.

An Eades-McKay algorithm for well-formed parentheses strings. Information Processing Letters, 68:255-259, 1998.

T. Mütze.

Combinatorial Gray codes – an updated survey. Electronic Journal of Combinatorics, (Dynamic Survey DS26), 2023.

ロト 不得 トイヨト イヨト 二日

F. Ruskey.

Combinatorial Generation. Book in preparation.

A. Williams.

The greedy Gray code algorithm.

In Algorithms and Data Structures, page 525–536, Berlin, Heidelberg, 2013.

D. Wong and V. Vajnovszki. Greedy Gray codes for Dyck words and ballot sequences. In COCOON 2023. 2023.

Efficient generation of some greedy Gray codes

Thank you!