
Efficient generation of some greedy Gray codes

Vincent Vajnovszki
joint work with Nathanaël Hassler and Dennis Wong

Laboratoire d’Informatique de Bourgogne & Macao Polytechnic University

2024 KMS Annual Meeting
October 24–26th

Suwon, Republic of Korea

Efficient generation of some greedy Gray codes

Overview

• The greedy Gray code algorithm

• Restricted classes of binary words

• Efficient exhaustive generation

2/23

Efficient generation of some greedy Gray codes

• The greedy Gray code algorithm

• Restricted classes of binary words

• Efficient generation

3/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010
1100

4/23

Efficient generation of some greedy Gray codes

Gray codes

A Gray code for a class of combinatorial objects
is a list that contains each object from the class
exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.

[Torsten Mütze, Combinatorial Gray codes – an
updated survey, 2023]

000
001
011
010
110
111
101
100

0011
1001
0101
0110
1010
1100

4/23

Efficient generation of some greedy Gray codes

Homogeneous transposition

0100110000101
0100111000001

Homogeneous transposition

5/23

Efficient generation of some greedy Gray codes

Homogeneous transposition

0100110000101 0100110000101
0100111000001 0101110000001

Homogeneous transposition Non homogeneous transposition

5/23

Efficient generation of some greedy Gray codes

Homogeneous transposition

0100110000101 0100110000101
0100111000001 0101110000001

Homogeneous transposition Non homogeneous transposition

Let S be a set of same length and same weight binary words.

Definition
A homogeneous Gray code for S is a list containing every word of S ,
such that two consecutive words differ by a homogeneous transposition.

5/23

Efficient generation of some greedy Gray codes

The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm
1 Initialize the list L with a particular word in S .
2 For the last word in L, homogeneously transposes the leftmost

possible 1 with the leftmost possible 0, such that the obtained
word is in S but not in L.

3 If at point 2. a new word is obtained, then append it to the list L
and return to point 2.

This definition is a specialisation of that introduced in
[Aaron Williams, The greedy Gray code algorithm, 2013]

This algorithm is not suitable for efficiently generating Gray codes since it
may need to “remember” an exponential number of objects

6/23

Efficient generation of some greedy Gray codes

The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm
1 Initialize the list L with a particular word in S .
2 For the last word in L, homogeneously transposes the leftmost

possible 1 with the leftmost possible 0, such that the obtained
word is in S but not in L.

3 If at point 2. a new word is obtained, then append it to the list L
and return to point 2.

This definition is a specialisation of that introduced in
[Aaron Williams, The greedy Gray code algorithm, 2013]

This algorithm is not suitable for efficiently generating Gray codes since it
may need to “remember” an exponential number of objects

6/23

Efficient generation of some greedy Gray codes

Example

1001
0101
0011

0011
1001
0101
0110
1010
1100

7/23

Efficient generation of some greedy Gray codes

Example

1001
0101
0011

0011
1001
0101
0110
1010
1100

7/23

Efficient generation of some greedy Gray codes

Example

1001
0101
0011

0011
1001
0101
0110
1010
1100

7/23

Efficient generation of some greedy Gray codes

Example

1001
0101
0011

0011
1001
0101
0110
1010
1100

7/23

Efficient generation of some greedy Gray codes

Questions

• Which classes of binary words this algorithm
generates ?

• Which first words generate the whole class ?

8/23

Efficient generation of some greedy Gray codes

• The greedy Gray code algorithm

• Restricted classes of binary words

• Efficient generation

9/23

Efficient generation of some greedy Gray codes

Fibonacci words

Definition
Let Fn(k) be the set of length n and weight k binary words that do not
have two consecutive 1’s.

|Fn(k)| =
(
n − k + 1

k

)
.

Example:
F5(2) = [00101, 01001, 01010, 10001, 10010, 10100].

10/23

Efficient generation of some greedy Gray codes

Generalised Dyck prefixes

Definition
Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k

|Cn(0, k)| =
(
n

k

)
C2n(1, n) is the set of length 2n Dyck words

|Cn(1, k)| =
1

n + 1

(
2n
n

)
C3n(2, n) is in bijection with size 3n ternary trees.

11/23

Efficient generation of some greedy Gray codes

Generalised Dyck prefixes

Definition
Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k

|Cn(0, k)| =
(
n

k

)

C2n(1, n) is the set of length 2n Dyck words

|Cn(1, k)| =
1

n + 1

(
2n
n

)
C3n(2, n) is in bijection with size 3n ternary trees.

11/23

Efficient generation of some greedy Gray codes

Generalised Dyck prefixes

Definition
Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k

|Cn(0, k)| =
(
n

k

)
C2n(1, n) is the set of length 2n Dyck words

|Cn(1, k)| =
1

n + 1

(
2n
n

)

C3n(2, n) is in bijection with size 3n ternary trees.

11/23

Efficient generation of some greedy Gray codes

Generalised Dyck prefixes

Definition
Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k

|Cn(0, k)| =
(
n

k

)
C2n(1, n) is the set of length 2n Dyck words

|Cn(1, k)| =
1

n + 1

(
2n
n

)
C3n(2, n) is in bijection with size 3n ternary trees.

11/23

Efficient generation of some greedy Gray codes

The set C8(1, 4) of Dyck words of length 8

01010101 00101011
00110101 00110011
00101101 01010011
01001101 01000111
00011101 00100111
00011011 00010111
01001011 00001111

12/23

Efficient generation of some greedy Gray codes

Generators

Definition
For α ∈ S , we denote by S(α) the list obtained by applying the greedy
algorithm for S , starting with α.

In addition, if S(α) contains each
binary word in S , then α is called a generator.

Proposition
The lexicographic smallest possible binary word and the lexicographic
largest possible binary word are generators for Fn(k) and for Cn(p, k).

13/23

Efficient generation of some greedy Gray codes

Generators

Definition
For α ∈ S , we denote by S(α) the list obtained by applying the greedy
algorithm for S , starting with α. In addition, if S(α) contains each
binary word in S , then α is called a generator.

Proposition
The lexicographic smallest possible binary word and the lexicographic
largest possible binary word are generators for Fn(k) and for Cn(p, k).

13/23

Efficient generation of some greedy Gray codes

• The greedy Gray code algorithm

• Restricted classes of binary words

• Efficient exhaustive generation

14/23

Efficient generation of some greedy Gray codes

Generation algorithms

Exhaustive generation algorithms are developed in computer science for
verification purposes, in statistical physics for computer experimentation,
or in bio-informatics to assess statistical significance of weak signals.

An exhaustive generation algorithms is optimal if it runs in constant
average time (it is a CAT algorithm).

15/23

Efficient generation of some greedy Gray codes

Recursive tail partitioned lists

The tail of a binary word is its unique suffix of the form 011···1

Definition
L is a recursive tail partitioned list if it has the form

L = L1 · 01u,L2 · 01u+1,L3 · 01u+2, · · · ,Lℓ+1 · 01u+ℓ

or the form

L = L1 · 01u+ℓ,L2 · 01u+ℓ−1,L3 · 01u+ℓ−2, · · · ,Lℓ+1 · 01u

for some u, ℓ ≥ 0, and each list Li , is in turn recursive tail partitioned.

16/23

Efficient generation of some greedy Gray codes

Recursive tail partitioned lists

The tail of a binary word is its unique suffix of the form 011···1

Definition
L is a recursive tail partitioned list if it has the form

L = L1 · 01u,L2 · 01u+1,L3 · 01u+2, · · · ,Lℓ+1 · 01u+ℓ

or the form

L = L1 · 01u+ℓ,L2 · 01u+ℓ−1,L3 · 01u+ℓ−2, · · · ,Lℓ+1 · 01u

for some u, ℓ ≥ 0, and each list Li , is in turn recursive tail partitioned.

16/23

Efficient generation of some greedy Gray codes

Recursive tail partitioned lists

Theorem
If L is a list of same length and same weight binary words and it is

a homogeneous Gray code, and
suffix partitioned,

then L is recursive tail partitioned.

17/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

18/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

01010101
00110101
00101101
01001101
00011101
00011011
01001011

00101011
00110011
01010011
01000111
00100111
00010111
00001111

18/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

01010101
00110101
00101101
01001101
00011101
00011011
01001011

00101011
00110011
01010011
01000111
00100111
00010111
00001111

18/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

01010101
00110101
00101101
01001101
00011101
00011011
01001011

00101011
00110011
01010011
01000111
00100111
00010111
00001111

18/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

01010101
00110101
00101101
01001101
00011101
00011011
01001011

00101011
00110011
01010011
01000111
00100111
00010111
00001111

18/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

01010101
00110101
00101101
01001101
00011101
00011011
01001011

00101011
00110011
01010011
01000111
00100111
00010111
00001111

18/23

Efficient generation of some greedy Gray codes

The list D1(01010101) obtained by the greedy algorithm with p = 1,
which is an homogeneous Gray code for C8(1, 4).

01010101
00110101
00101101
01001101
00011101
00011011
01001011

00101011
00110011
01010011
01000111
00100111
00010111
00001111

18/23

Efficient generation of some greedy Gray codes

CAT generation for a homogeneous Gray code for
Cn(p, k)

procedure pref(m, j)
if m = (p + 1)j then

if p = 0 then return
end if
m← m − 1 ; j ← j − 1

end if
if Sj < m then # Increasing tail

for i = 0 to j − 1 do # i is the number of 1’s in the tail
pref(m − i − 1, j − i)
Sj−i ← m − i
print(S)

end if
if Sj = m then # Decreasing tail

for i = j − 1 downto 0 do # i is the number of 1’s in the tail
Sj−i ← max(Sj−i−1 + 1, (p + 1)(j − i))
print(S)
pref(m − i − 1, j − i)

end if
end procedure

19/23

Efficient generation of some greedy Gray codes

the main call is pref(n, k), it generates Cn(p, k)

Si is the position of the ith 1 in the word
table S and the parameter p are global
S is initialized as Si ← (p + 1)i for 1 ≤ i ≤ k

20/23

Efficient generation of some greedy Gray codes

Algorithm analysis

With a classical complexity analysis, we can obtain the following result

Proposition
The call pref(n, k) generates the homogeneous greedy Gray code for
Cn(p, k) efficiently.

See [Frank Ruskey, Combinatorial Generation Book].

21/23

Efficient generation of some greedy Gray codes

Biblio

A. Bultena and F. Ruskey.
An Eades-McKay algorithm for well-formed parentheses strings.
Information Processing Letters, 68 :255–259, 1998.

T. Mütze.
Combinatorial Gray codes – an updated survey.
Electronic Journal of Combinatorics, (Dynamic Survey DS26), 2023.

F. Ruskey.
Combinatorial Generation.
Book in preparation.

A. Williams.
The greedy Gray code algorithm.
In Algorithms and Data Structures, page 525–536, Berlin,
Heidelberg, 2013.

D. Wong and V. Vajnovszki.
Greedy Gray codes for Dyck words and ballot sequences.
In COCOON 2023, 2023.

22/23

Efficient generation of some greedy Gray codes

Thank you !

23/23

