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Pattern avoiding permutations

Sn is the set of length n permutations

α ∈ Sn contains τ ∈ Sk if there is a subsequence

1 ≤ i1 < i2 < · · · < ik ≤ n

such that

(αi1 , . . . , αik )

is order-isomorphic to τ (= pattern)

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



Pattern avoiding permutations

Sn is the set of length n permutations
α ∈ Sn contains τ ∈ Sk if there is a subsequence

1 ≤ i1 < i2 < · · · < ik ≤ n

such that

(αi1 , . . . , αik )

is order-isomorphic to τ (= pattern)

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1 → 7 5 3

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1 → 7 5 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1 → 7 6 3

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1 → 7 6 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 2 1
4 7 2 5 6 3 1 → 4 2 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 1 2
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 1 2
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 1 2
4 7 2 5 6 3 1 → 7 2 3

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 1 2
4 7 2 5 6 3 1

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



3 1 2
4 7 2 5 6 3 1 → 4 2 3

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



Sn(τ) is the set of permutations in Sn avoiding τ

for a set A of permutations, Sn(A) is the set of
permutations in Sn avoiding each permutation in A
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Fibonacci numbers
S(321, 312, 231)

even index Fibonacci numbers
S(321, 312, 231)

Pell numbers
S(321, 3412, 4123), S(312, 4321, 3421)

Grand Dyck
S(1234, 1324, 2134, 2314), S(1324, 2314, 3124, 3214)

Schröder numbers
S(1234, 2134), S(1324, 2314), S(4123, 4213)

. . .
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Schröder numbers
S(1234, 2134), S(1324, 2314), S(4123, 4213)

. . .

Phan-Thuan DO, Vincent VAJNOVSZKI Exhaustive generation of classes of permutations



Fibonacci numbers
S(321, 312, 231)

even index Fibonacci numbers
S(321, 312, 231)

Pell numbers
S(321, 3412, 4123), S(312, 4321, 3421)

Grand Dyck
S(1234, 1324, 2134, 2314), S(1324, 2314, 3124, 3214)
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Exhaustive generating algorithms

An exhaustive generating algorithm for a class of combinatorial
objects is an algorithm that produces exhaustively (with no
repetition nor omissions) the objects of the class
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If a generating algorithm produces combinatorial objects so that
only a constant amount of computation is done between
successive objects, in an amortized sense, then one says that it
runs in constant amortized time (CAT).

A recursive generating algorithm satisfying the following
properties is a CAT algorithm (Ruskey):

The amount of computation in each call is proportional to the
number of recursive calls produced by it, and each call

1 is a terminal call and produces a combinatorial object, or
2 produces at least two recursive calls, or
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Succession rules

The sites of π ∈ Sn are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n + 1

i is an active site of π ∈ Sn(T ) if the permutation obtained
from π by inserting n + 1 into its i th site is a permutation in
Sn+1(T )

χT (i , π) - the number of active sites of the permutation
obtained from π by inserting n + 1 into its i th active site
The active sites of a permutation π ∈ Sn(T ) are right
justified if the sites to the right of any active site are also
active

Example:

13452 ∈ S5(312) has 3 active sites right justified: 134 5 2
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A set of patterns T is called regular if
1 ∈ S1(T ) has two sons

all active sites are right justified
for any n ≥ 1 and π ∈ Sn(T ), χT (i , π) does not depend on
π but solely on i and on the number k of active sites of π.
In this case we denote χT (i , π) by χT (i , k) and we call it
succession function

(k) (χT (1, k))(χT (2, k)) . . . (χT (k , k))

or (k) ∪k
i=1(χT (i , k)), for k ≥ 1,

is called the succession rule corresponding to the set of
patterns T [Pinzani, Barcucci, . . .]

• succession function → succession rule
• succession rule 9 succession function
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T = {312}

1234 1243 1324 1342 1432 2134 2143 2314 2341 2431 3214 3241 3421

123 132 213 231 321

12 21

1

4321

.
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T = {312}, χT (i , k) = i + 1

1234 1243 1324 1342 1432 2134 2143 2314 2341 2431 3214 3241 3421

123 132 213 231 321

12 21

1

4321
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T = {321}

1234 1243 1423 4123 1324 1342 3124 3142 3412 2134 2143 2413 2314 2341
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T = {321} χT (i , k) =

{
k + 1 if i = 1
i otherwise

1234 1243 1423 4123 1324 1342 3124 3142 3412 2134 2143 2413 2314 2341

123 132 231213

2112

1

.

.

312
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procedure Gen Avoid(size,k)
local i
if size = n then Print(π)
else size := size + 1

π := [π, size]
Gen Avoid(size,χ(1, k))
for i := 2 to k do

π := π · (size − i + 2, size − i + 1)
Gen Avoid(size,χ(i , k))

end do
for i := k dowto 2 do

π := π · (size − i + 2, size − i + 1)
end do

end if
end procedure.
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2n−1

T = {321, 312}, χT (i , k) = 2

T = {321, 231}, χT (i , k) =

{
k + 1 if i = 1
1 otherwise

Pell numbers

T = {321, 3412, 4123}, χT (i , k) =

{
3 if i = 1
2 otherwise

T = {312, 4321, 3421}, χT (i , k) =

{
3 if i = 2
2 otherwise
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Even index Fibonacci numbers

T = {321, 3412}, χT (i , k) =

{
k + 1 if i = 1
2 otherwise

T = {321, 4123}, χT (i , k) =

{
3 if i = 1
i otherwise

T = {312, 4321}, χT (i , k) =

{
3 if k = 3 and i = 3
i + 1 otherwise
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Catalan numbers

T = {312}, χT (i , k) = i + 1

T = {321}, χT (i , k) =

{
k + 1 i = 1
i otherwise
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Schröder numbers

T = {1234, 2134}, χT (i , k) =

{
k + 1 i = 1 or i = 2
i otherwise

T = {1324, 2314}, χT (i , k) =

{
k + 1 i = 1 or i = k
i + 1 otherwise

T = {4123, 4213}, χT (i , k) =

{
k + 1 i = k − 1 or i = k
i + 2 otherwise
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Grand Dyck numbers
T = {1234, 1324, 2134, 2314},

χT (i , k) =

 k + 1 i = 1
3 i = 2
i otherwise

T = {1324, 2314, 3124, 3214},

χT (i , k) =

{
3 i = 1
i + 1 otherwise
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Motzkin numbers

T = {321, 3142}, χT (i , k) =

{
k + 1 i = 1
i − 1 otherwise

numbers of left factors of Motzkin words

T = {321, 41523}, χT (i , k) =

 k + 1 i = 1
2 i = 2
i − 1 otherwise

Fibonacci numbers

T = {321, 312, 231}, χT (i , k) =

{
1 i = 1
2 otherwise
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