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Pattern avoiding permutations

@ G, is the set of length n permutations
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Pattern avoiding permutations

@ G, is the set of length n permutations
@ a € &, contains T € & if there is a subsequence

1<ii<b<--<ik<n

such that

(Oz,'1,. . '7aik)

is order-isomorphic to 7 (= pattern)
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@ Gp(7) is the set of permutations in &, avoiding 7
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@ Gp(7) is the set of permutations in &, avoiding 7

@ for a set A of permutations, &,(A) is the set of
permutations in G, avoiding each permutation in A
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S(321), 6(312)
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@ Catalan
S(321), 6(312)

http://www.research.att.com/~njas/sequences/index.htmi?
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Greetings from The On-Line Encyclopedia of Integer Sequences!
catalan (search) Hins

Search: catalan
Displaying 1-10 of 2378 results found. page1234567891011...238
Format: long | short | internal | text ~ Sort: relevance | refe Inumber  Highlight: on | off
A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers. l;jg
(Formerly M1459 N0O577)

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845,
35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640,

343059613650, 1289904147324 (list; graph; listen)
OFFSET 0,3
COMMENT The solution to Schroeder's first problem. A very large number of

combinatorial interpretations are known - see references, esp. Stanley,
Enumerative Combinatorics, Volume 2.

Number of ways to insert n pairs of parentheses in a word of n+l letters.
E.g. for n=3 there are 5 ways: ((ab)(cd)), (((ab)e)d), ((a(bc))d),
(a((bc)d)), (a(b(ecd))).

Consider all the binomial(2n,n) paths on squared paper that (i) start at (0,
0), (ii) end at (2n, 0) and (iii) at each step, either make a (+1,+1) step
or a (+1,-1) step. Then the number of such paths which never go never
below the x-axis is C(n) [Chung-Feller]

a(n) is the number of ordered rooted trees with n nodes, not including the
root. See the Conway-Guy reference where these rooted ordered trees are
called plane bushes. See also the Bergeron et al. reference, Example 4, p.
167. W. Lang Aug 07 2007.

Shifts one nlace left when convolved with itself.
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@ Fibonacci numbers
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@ Fibonacci numbers
G(321,312,231)

@ even index Fibonacci numbers
6(321,312,231)

@ Pell numbers
5(321,3412,4123), 6(312,4321,3421)

Phan-Thuan Do, Vincent VAINOVSZKI Exhaustive generation of classes of permutations



@ Fibonacci numbers
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@ Fibonacci numbers
G(321,312,231)
@ even index Fibonacci numbers
6(321,312,231)
@ Pell numbers
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Exhaustive generating algorithms

An exhaustive generating algorithm for a class of combinatorial
objects is an algorithm that produces exhaustively (with no
repetition nor omissions) the objects of the class
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If a generating algorithm produces combinatorial objects so that
only a constant amount of computation is done between
successive objects, in an amortized sense, then one says that it
runs in constant amortized time (CAT).
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If a generating algorithm produces combinatorial objects so that
only a constant amount of computation is done between
successive objects, in an amortized sense, then one says that it
runs in constant amortized time (CAT).

A recursive generating algorithm satisfying the following
properties is a CAT algorithm (Ruskey):
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If a generating algorithm produces combinatorial objects so that
only a constant amount of computation is done between
successive objects, in an amortized sense, then one says that it
runs in constant amortized time (CAT).

A recursive generating algorithm satisfying the following
properties is a CAT algorithm (Ruskey):

The amount of computation in each call is proportional to the
number of recursive calls produced by it, and each call
@ is a terminal call and produces a combinatorial object, or

@ produces at least two recursive calls, or
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Succession rules

@ The sites of T € &, are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n + 1
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Succession rules

@ The sites of T € &, are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n + 1

@ jis an active site of m € &,(T) if the permutation obtained
from 7 by inserting n+ 1 into its ith site is a permutation in
6n-&-1 ( T)
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Succession rules

@ The sites of T € &, are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n + 1

@ jis an active site of m € &,(T) if the permutation obtained
from 7 by inserting n+ 1 into its ith site is a permutation in
6n-&-1 ( T)

@ x7(/,m) - the number of active sites of the permutation
obtained from = by inserting n + 1 into its jth active site
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Succession rules

@ The sites of T € &, are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n + 1

@ jis an active site of m € &,(T) if the permutation obtained
from 7 by inserting n+ 1 into its ith site is a permutation in
6n-&-1 ( T)

@ x7(/,m) - the number of active sites of the permutation
obtained from = by inserting n + 1 into its jth active site

@ The active sites of a permutation = € &,(T) are right

justified if the sites to the right of any active site are also
active
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Succession rules

@ The sites of T € &, are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n+ 1

@ jis an active site of m € &,(T) if the permutation obtained
from 7 by inserting n+ 1 into its ith site is a permutation in
6n-&-1 ( T)

@ x7(/,m) - the number of active sites of the permutation
obtained from = by inserting n + 1 into its jth active site

@ The active sites of a permutation = € &,(T) are right

justified if the sites to the right of any active site are also
active

13452 € 65(312) has 3 active sites right justified:
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Succession rules

@ The sites of T € &, are the positions between two
consecutive entries, before the first and after the last entry;
they are numbered, from right to left, from 1 to n+ 1

@ jis an active site of m € &,(T) if the permutation obtained
from 7 by inserting n+ 1 into its ith site is a permutation in
6n-&-1 ( T)

@ x7(/,m) - the number of active sites of the permutation
obtained from = by inserting n + 1 into its jth active site

@ The active sites of a permutation = € &,(T) are right

justified if the sites to the right of any active site are also
active

13452 € 65(312) has 3 active sites right justified: 134 .5.2_
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A set of patterns T is called regular if
@ 1€ S4¢(T) has two sons
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A set of patterns T is called regular if
@ 1€ S4¢(T) has two sons
@ all active sites are right justified
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A set of patterns T is called regular if
@ 1€ S4¢(T) has two sons
@ all active sites are right justified

@ foranyn>1and m € &,(T), x7(i, ) does not depend on
« but solely on i and on the number k of active sites of .
In this case we denote 7 (i, 7) by x7(i, k) and we call it
succession function
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A set of patterns T is called regular if
@ 1€ S4¢(T) has two sons
@ all active sites are right justified

@ foranyn>1and m € &,(T), x7(i, ) does not depend on
« but solely on i and on the number k of active sites of .
In this case we denote 7 (i, 7) by x7(i, k) and we call it
succession function

(k) ~ (xr(1, k) (x7(2, K)) - - - (xT (K, K))

or (k) ~ UK (x7(i, k)), for k > 1,

is called the succession rule corresponding to the set of
patterns T [Pinzani, Barcucci, .. .]

Phan-Thuan Do, Vincent VAINOVSZKI Exhaustive generation of classes of permutations



A set of patterns T is called regular if
@ 1€ S4¢(T) has two sons
@ all active sites are right justified

@ foranyn>1and m € &,(T), x7(i, ) does not depend on
« but solely on i and on the number k of active sites of .
In this case we denote 7 (i, 7) by x7(i, k) and we call it
succession function

(k) ~ (xr(1, k) (x7(2, K)) - - - (xT (K, K))

or (k) ~ U, (x7(i, k), for k > 1,

is called the succession rule corresponding to the set of
patterns T [Pinzani, Barcucci, .. .]

e succession function — succession rule
e succession rule -~ succession function
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T = {312}
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1234 1243 1324 1342 1432
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T = {312}
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123 132 213 231 321

AN AN AN

1234 1243 1324 1342 1432 2134 2143 2314 2341 2431 3214 3241 3421 4321
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T = {312}, x7(i, k):i+1

/\
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123 132 213 231 321

AN AN AN

1234 1243 1324 1342 1432 2134 2143 2314 2341 2431 3214 3241 3421 4321
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T = {321}

1
/ \
12 21
/\ \ N
123 132 312 213 231

/N /N

1234 1243 1423 4123 1324 1342
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T = {321}

1

/\21
| T~ PN

123 132 312 213 231

/N /N I IS N

1234 1243 1423 4123 1324 1342 3124 3142 3412 2134 2143 2413 2314 2341
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. kK+1 ifi=1
T ={321} xr(i, k) = { i otherwise
1

/\21
| T~ PN

123 132 312 213 231

/N /N I IS N

1234 1243 1423 4123 1324 1342 3124 3142 3412 2134 2143 2413 2314 2341
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procedure Gen_Avoid (Size, K)
local |
if Size=n then Print (w)
else size .= size + 1
7= [r, size]
Gen_Avoid (size, x(1,k))
for i:=2 to k do
m.=mn-(size—i+2,size—i+1)
Gen_Avoid (size, x(i, k) )
end do
for i:= K dowto 2 do
m=mn-(size—i+2,size—i+1)
end do
end if
end procedure.
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Abstract

The past decade has seen a flurry of research into pattern avoiding permutations but little of it is concerned with their exhaustive
generation. Many applications call for exhaustive generation of permutations subject to various constraints or imposing a particular
ing order. In this paper we present generating algorithms and combinatorial Gray codes for several families of pattern
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P 2n71
o T={321,312}, xr(i,k) =2

- o k1 =1
o T={321,231}, x7(i, k) = { 1 otherwise
@ Pell numbers
, 3 ifi=1
o T ={321,3412,4123}, xr('vk>—{ 2 otherwise
, 3 ifi=2
o T={312,4321,3421}, x7(1,K) = { 5 oiherwise
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@ Even index Fibonacci numbers
o T—{321,3412}, XT(i,k):{ K1 dfi=1

2 otherwise

3 ifi=1

o T ={321,4123}, x1(i, k):{ " otherwise

. 3 if k=3andi=3
° T={812,4321} x7(/, k):{ i+1 otherwise
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@ Catalan numbers
o T=1{312}, xr(i,k)=i+1

k1 Q=1

o T ={321}, x7(i,k) = { i otherwise
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@ Schroder numbers
, k+1 i=1ori=2
o T =1{1234,2134}, x7(i,k) = { ; otherwise

o T ={1324,2314}, x1(i, k)

k+1 i=1ori=k
i+1 otherwise
k+1 i=k—-1ori=k

o T =1{4123,4213}, x1(i,k) = { it2  otherwise
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@ Grand Dyck numbers
o T ={1234,1324,2134,2314},

k+1 i=1
xr(i,k)={ 3 i=2

i otherwise
o T ={1324,2314,3124,3214},

, 3 i=1
xr(i,k) = { i+1 otherwise
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@ Motzkin numbers
k+1 i=1

o T =1{321,3142}, x7(i, k) = { i—1 otherwise

@ numbers of left factors of Motzkin words
k+1 i=1
o T =1{321,41523}, x7(i,k) ={ 2 i=2
i—1 otherwise
@ Fibonacci numbers

° T:{321,312,231},Xr(i,k)={ 1=

2 otherwise
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