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Notations

Sn is the set of length n permutations
Sn(A) is the set of permutations in Sn avoiding each
permutation in A
S(A) = ∪∞n=0Sn(A)
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The context

• E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani
Permutations avoiding an increasing number of
length-increasing forbidden subsequences, 2000

Γm ⊂ Sm

Γm = {σ ∈ Sm | σ(m − 1) = m − 1 and σ(m) = m}

Γm is the set of length m permutations with fixed points in the
last and last but one position
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Example

Γ3 = {123}

and so card(Sn(Γ3)) = cn, the nth Catalan
number,
Γ4 = {1234, 2134} and so card(Sn(Γ4)) = rn, the nth
Schröder number
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Barcucci et al. gave a multivariate generating function for the
set of permutations in S(Γm) according with

length
left minima
non-inversions

In particular

Theorem (Barcucci �et al.)

The generating function of the sequence (card(Sn(Γm)))n≥0
is

m−3∑
i=1

i! · x i +

xm−4 · (m − 3)! · 1 − (m − 1)x −
√

1 − 2(m − 1)x + (m − 3)2x2

2
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The context

• D. Kremer Permutations with forbidden subsequences and a
generalized Schröder number, 2000
Postscript: “Permutations with forbidden subsequences and a
generalized Schröder number” 2003

For 1 ≤ s, t ≤ m, s 6= t , define Γm;s,t ⊂ Sm by

Γm;s,t = {σ ∈ Sm | σ(s) = m − 1 and σ(t) = m}

In particular, Γm;m−1,m = Γm

Theorem (Kremer 2000, 2003)
For

|t − s| ≤ 2, or
t ∈ {1, m}

the cardinality of Sn(Γm;s,t) does not depend on s and t
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The main result

We generalize these results by imposing that the second
largest element of the length m forbidden patterns occurs in
one of the last p positions

For 1 ≤ j < m let define Σm,j ⊂ Sm by:

σ ∈ Σm,j iff

σ(1) = m, and
σ(m + 1 − j) = m − 1

Example

Σ4,1 = {4123, 4213}

Σ4,2 = {4132, 4231}
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For 1 ≤ p < m define Σp
m ⊂ Sm by

Σp
m =

p⋃
j=1

Σm,j
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Example

(m, p) = (2, 1)
Σ1

2 = {21} and card(Sn(Σ
1
2)) = 1

(m, p) = (3, 1)
Σ1

3 = {312} and card(Sn(Σ
1
3)) is the Catalan number

(m, p) = (3, 2)
Σ2

3 = {312, 321} and card(Sn(Σ
2
3)) = 2n−1

(m, p) = (4, 1)
Σ1

4 = {4123, 4213} and card(Sn(Σ
1
4)) is the Schröder

number
(m, p) = (4, 2)
Σ2

4 = {4123, 4213, 4132, 4231} and card(Sn(Σ
2
4)) is the

(n − 1)th central binomial coefficient
(2n−2

n−1

)
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card(Σp
m)

m\p 1 2 3 4
2 1 − − −
3 Catalan 2n−1 − −
4 Schröder

(2n−2
n−1

)
2 · 3n−2 A025192 −

5 A054872 6 · 4n−3 A084509

We give a generating function for the set

S(Σp
m)
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Tools

Generating trees

: how S(Σp
m) can be

recursively defined?

Production matrices

: how this definition can
be turned into a generating function?
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Generating trees

A succession (or ECO) rule is a formal system consisting of a
root e0 (or axiom) and a set of productions of the form

(k) (e1(k))(e2(k)) . . . (ek (k))

Succession rule explains how an object of size n can be
uniquely expanded into several objects of size n + 1.
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The sites of π ∈ Sn are the positions between two
consecutive entries, before the first and after the last entry

For a permutation π ∈ Sn(T ), i is an active site if the
permutation obtained from π by inserting n + 1 into its i th
site is a permutation in Sn+1(T ); we call such a
permutation in Sn+1(T ) a son of π

For any π ∈ Sn(T ), by erasing n in π one obtains a
permutation in Sn−1(T ); or equivalently, any permutation in
Sn(T ) is obtained from a permutation in Sn−1(T ) by
inserting n in one of its active sites
We say that the active sites of a permutation π ∈ Sn(T )
are right justified if the sites to the right of any active site
are also active.
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Theorem
Let m ≥ 3 and 1 ≤ p < m.

1 1 ∈ S1(Σ
p
m) has two active sites and any π ∈ Sn(Σ

p
m) has

its active sites right justified.
2 The number of active sites of the permutation

σ ∈ Sn+1(Σ
p
m) obtained from π ∈ Sn(Σ

p
m) by inserting n + 1

into its i th active site does not depend on π but only on
i , and
the number k of active sites of π

χm,p(k , i) the number of active sites of σ
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Theorem

χm,p(k , i) =


k + 1 if k < m − 1 or

k − m + p + 2 ≤ i ≤ k
m − 1 if k ≥ m − 1 and 1 ≤ i ≤ p
m + i − p − 1 otherwise.
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Corollary

The succession rule for the set of permutations Sn(Σ
p
m) is:

root (2)
rules (k) {

(k + 1)k if k < m − 1
(m − 1)p(m)(m + 1) . . . (k)(k + 1)m−p−1 otherwise
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Example

(m, p) = (3, 1) Dyck rules
root (2)

(k)  (2)(3) . . . (k)(k + 1)

(m, p) = (4, 1) Schröder rules
root (2)
rules (2)  (3)(3)

(k)  (3)(4) . . . (k)(k + 1)(k + 1) if k ≥ 3
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Example

(m, p) = (4, 2) Grand Dyck rules
root (2)
rules (2)  (3)(3)

(k)  (3)(3)(4) . . . (k)(k + 1) if k ≥ 3
(m, p) = (5, 2):

root (2)
rules (2)  (3)(3)

(3)  (4)(4)(4)
(k)  (4)(4)(5) . . . (k)(k + 1)(k + 1) if k ≥ 4.
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Production matrices

• E. Deutsch, L. Ferrari, S. Rinaldi : 2005

Any succession rule can be expressed as:
a root `1

and a set of productions

{(`u) (`1)
v(u,1)(`2)

v(u,2)(`3)
v(u,3) . . .}u≥1

where

{`1, `2, . . .} is the set of admissible
the ultimately zero integer sequence {v(u, k)}k≥0 gives the
repetition order

The matrix

R = [u(i , j)]i,j≥1

is the production matrix of the succession rule
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Example
Dyck rule:
root (2)

(k)  (2)(3) . . . (k)(k + 1)
production matrix:

1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
...

...
...

...
...

...
. . .
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Example
Grand Dyck rule

root (2)
rules (2)  (3)(3)

(k)  (3)(3)(4) . . . (k)(k + 1) if k ≥ 3
production matrix:

0 2 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 2 1 1 0 0 . . .
...

...
...

...
...

...
. . .
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The integer sequence corresponding to a succession rule (or
equivalently, to a production matrix) is the sequence giving, for
each n, the number of objects of size n produced by the
succession rule

Sn(Σ
p
m)
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The integer sequence corresponding to a succession rule (or
equivalently, to a production matrix) is the sequence giving, for
each n, the number of objects of size n produced by the
succession rule

Sn(Σ
p
m)

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations



root (2)
rules (k) {

(k + 1)k if k < m − 1
(m − 1)p(m)(m + 1) . . . (k)(k + 1)m−p−1 otherwise

Am,p =



0 2 0 0 . . . 0 0 0 0 . . .
0 0 3 0 . . . 0 0 0 0 . . .
0 0 0 4 . . . 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

0 0 0 0 . . . m − 2 0 0 0 . . .
0 0 0 0 . . . p m − p − 1 0 0 . . .
0 0 0 0 . . . p 1 m − p − 1 0 . . .
0 0 0 0 . . . p 1 1 m − p − 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .
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root (2)
rules (k) {

(k + 1)k if k < m − 1
(m − 1)p(m)(m + 1) . . . (k)(k + 1)m−p−1 otherwise

Am,p =



0 2 0 0 . . . 0 0 0 0 . . .
0 0 3 0 . . . 0 0 0 0 . . .
0 0 0 4 . . . 0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

0 0 0 0 . . . m − 2 0 0 0 . . .
0 0 0 0 . . . p m − p − 1 0 0 . . .
0 0 0 0 . . . p 1 m − p − 1 0 . . .
0 0 0 0 . . . p 1 1 m − p − 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .
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For a production matrix P, fP is generating function of the
integer sequence associated with P
u> is the row vector (1 0 0 . . . 0)

e is the vector (1 1 1 . . . 1)>
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Theorem (E. Deutsch, L. Ferrari, S. Rinaldi)

Let a, b, c be three nonnegative integers, P and Q two
production matrices related by

P =

[
b a · u>

c · e Q

]
.

Then
fP(x) =

1 + axfQ(x)

1 − bx − acx2fQ(x)
.
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Corollary

Let a, b, c be three positive integers and P be an infinite
production matrix of the form

P =

[
b a · u>

c · e P

]
.

Then fP(x) satisfies the quadratic equation

acx2fP(x)2 − (1 − bx − ax)fP(x) + 1 = 0.
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Corollary
Let a be an integer and R a production matrix of the form

R =


1 a 0 0 0 . . .
1 1 a 0 0 . . .
1 1 1 a 0 . . .
1 1 1 1 a . . .
...

...
...

...
...

. . .

 .

Then
fR(x) =

Na(x)

2ax2

where

Na(x) = 1 − (a + 1)x −
√

1 + (a − 1)2x2 − 2(a + 1)x .

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations



Lemma
Let P be a production matrix of the form

P =


b a 0 0 0 . . .
b 1 a 0 0 . . .
b 1 1 a 0 . . .
b 1 1 1 a . . .
...

...
...

...
...

. . .

 .

Then
fP(x) =

2x + Na(x)

x(2 − 2bx − bNa(x))
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Main results

Lemma

P =



0 2 0 ... 0 0 0 ...

0 0 3 ... 0 0 0 ...

...
0 0 0 ... m−4 0 0 ...

0 0 0 ... 0 m−3 0 ...

0 0 0 ... 0 0 m−2 ...

... ... ... ...
... ... Q


Then

fP(x) =
m−4∑
i=0

(i + 1)! · x i + (m − 2)! · xm−3 · fQ(x).
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Theorem
The generating function for the succession rule

root (2)

rules (k)  

{
(k + 1)k if k < m − 1
(m − 1)p(m)(m + 1) . . . (k)(k + 1)m−p−1

is given by

Ψ(x) =
m−4∑
i=0

(i + 1)! · x i + (m − 2)! · xm−3 · F (x),

where

F (x) =
2x + Nm−p−1(x)

x(2 − 2px − pNm−p−1(x))
.

and

Na(x) = 1 − (a + 1)x −
√

1 + (a − 1)2x2 − 2(a + 1)x .
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Corollary

The generating function of the sequence {card(Sn(Σ
p
m))}n≥0 is

x ·Ψ(x).

Corollary

card(Sn(Σ
p
p+1)) =

{
n! if n < p − 1
(p − 1)! · pn−p+1 otherwise
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Corollary

The generating function of the sequence {card(Sn(Σ
p
m))}n≥0 is

x ·Ψ(x).

Corollary

card(Sn(Σ
p
p+1)) =

{
n! if n < p − 1
(p − 1)! · pn−p+1 otherwise
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Particular instances

card(Sn(Σ
1
5))

first values: 0, 1, 2, 6, 24, 114, 600, 3372, 19824, . . .
Sloane: A054872
generating function: x ·

(
2 − 2x −

√
1 − 8x + 4x2

)
card(Sn(Σ

2
5))

first values: 0, 1, 2, 6, 24, 108, 516, 2556, 12972 . . .

generating function: x ·
(

1 + 2x + 3x · 1−x−
√

1−6x+x2

x+
√

1−6x+x2

)
card(Sn(Σ

3
5))

first values: 0, 1, 2, 6, 24, 102, 444, 1956, . . .
generating function: x ·

(
1 + 2x + 6x · 1−

√
1−4x

−1+3
√

1−4x

)
card(Sn(Σ

4
5))

first values: 0, 1, 2, 6, 24, 96, 384, 1536, 6144, . . .
Sloane: A084509
generating function: x · 1−2x−2x2

1−4x
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