Generalized Schröder permutations

Elena BARCUCCI¹ Vincent VAJNOVSZKI²

¹Dipartimento di Sistemi e Informatica, Università di Firenze, Italia

²Université de Bourgogne–Le2i, CNRS, France

September - 2010

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

• \mathfrak{S}_n is the set of length *n* permutations

• $\mathfrak{S}_n(A)$ is the set of permutations in \mathfrak{S}_n avoiding each permutation in A

• $\mathfrak{S}(A) = \cup_{n=0}^{\infty} \mathfrak{S}_n(A)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- \mathfrak{S}_n is the set of length *n* permutations
- S_n(A) is the set of permutations in S_n avoiding each permutation in A
- $\mathfrak{S}(A) = \cup_{n=0}^{\infty} \mathfrak{S}_n(A)$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- \mathfrak{S}_n is the set of length *n* permutations
- S_n(A) is the set of permutations in S_n avoiding each permutation in A
- $\mathfrak{S}(A) = \cup_{n=0}^{\infty} \mathfrak{S}_n(A)$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

• E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani Permutations avoiding an increasing number of length-increasing forbidden subsequences, 2000

ヘロン 人間 とくほ とくほ とう

• E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani Permutations avoiding an increasing number of length-increasing forbidden subsequences, 2000

 $\Gamma_m \subset \mathfrak{S}_m$

$$\Gamma_m = \{ \sigma \in \mathfrak{S}_m \mid \sigma(m-1) = m-1 \text{ and } \sigma(m) = m \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani Permutations avoiding an increasing number of length-increasing forbidden subsequences, 2000

 $\Gamma_m \subset \mathfrak{S}_m$ $\Gamma_m = \{ \sigma \in \mathfrak{S}_m \mid \sigma(m-1) = m-1 \text{ and } \sigma(m) = m \}$

 Γ_m is the set of length *m* permutations with fixed points in the last and last but one position

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

•
$$\Gamma_3 = \{123\}$$

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Γ₃ = {123} and so card(𝔅_n(Γ₃)) = c_n, the *n*th Catalan number,

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• $\Gamma_3 = \{123\}$ and so card $(\mathfrak{S}_n(\Gamma_3)) = c_n$, the *n*th Catalan number,

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- $\Gamma_3 = \{123\}$ and so card $(\mathfrak{S}_n(\Gamma_3)) = c_n$, the *n*th Catalan number,
- $\Gamma_4 = \{1234, 2134\}$ and so card $(\mathfrak{S}_n(\Gamma_4)) = r_n$, the *n*th Schröder number

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Barcucci *et al.* gave a multivariate generating function for the set of permutations in $\mathfrak{S}(\Gamma_m)$ according with

- length
- Ieft minima
- non-inversions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Barcucci *et al.* gave a multivariate generating function for the set of permutations in $\mathfrak{S}(\Gamma_m)$ according with

- length
- Ieft minima
- non-inversions
- In particular

Theorem (Barcucci et al.)

The generating function of the sequence $(card(\mathfrak{S}_n(\Gamma_m)))_{n>0}$

ヘロア 人間 アメヨア 人口 ア

ъ

Barcucci *et al.* gave a multivariate generating function for the set of permutations in $\mathfrak{S}(\Gamma_m)$ according with

- length
- Ieft minima
- non-inversions

In particular

Theorem (Barcucci et al.)

The generating function of the sequence $(\operatorname{card}(\mathfrak{S}_n(\Gamma_m)))_{n\geq 0}$ is

$$\sum_{i=1}^{m-3} i! \cdot x^{i} + x^{m-4} \cdot (m-3)! \cdot \frac{1 - (m-1)x - \sqrt{1 - 2(m-1)x + (m-3)^{2}x^{2}}}{2}$$

・ロト ・ 同ト ・ ヨト ・ ヨ・

The context

• D. Kremer *Permutations with forbidden subsequences and a generalized Schröder number*, 2000 Postscript: "Permutations with forbidden subsequences and a generalized Schröder number" 2003

イロト イポト イヨト イヨト 三日

The context

• D. Kremer *Permutations with forbidden subsequences and a generalized Schröder number*, 2000 Postscript: "Permutations with forbidden subsequences and a generalized Schröder number" 2003 For $1 \le s, t \le m, s \ne t$, define $\Gamma_{m;s,t} \subset \mathfrak{S}_m$ by

$$\Gamma_{m;s,t} = \{ \sigma \in \mathfrak{S}_m \mid \sigma(s) = m - 1 \text{ and } \sigma(t) = m \}$$

In particular, $\Gamma_{m;m-1,m} = \Gamma_m$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The context

• D. Kremer *Permutations with forbidden subsequences and a generalized Schröder number*, 2000 Postscript: "Permutations with forbidden subsequences and a generalized Schröder number" 2003 For $1 \le s, t \le m, s \ne t$, define $\Gamma_{m;s,t} \subset \mathfrak{S}_m$ by

$$\Gamma_{m;s,t} = \{ \sigma \in \mathfrak{S}_m \mid \sigma(s) = m - 1 \text{ and } \sigma(t) = m \}$$

In particular, $\Gamma_{m;m-1,m} = \Gamma_m$

Theorem (Kremer 2000, 2003)

For

the cardinality of $\mathfrak{S}_n(\Gamma_{m;s,t})$ does not depend on s and t

ヘロン 人間 とくほとく ほとう

ъ

ヘロン 人間 とくほ とくほ とう

For $1 \leq j < m$ let define $\sum_{m,j} \subset \mathfrak{S}_m$ by:

 $\sigma \in \Sigma_{m,j}$ iff

•
$$\sigma(1) = m$$
, and

•
$$\sigma(m+1-j) = m-1$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

For $1 \le j < m$ let define $\sum_{m,j} \subset \mathfrak{S}_m$ by:

$$\sigma \in \Sigma_{m,j}$$
 iff

•
$$\sigma(1) = m$$
, and

•
$$\sigma(m+1-j) = m-1$$

Example

•
$$\Sigma_{4,1} = \{4123, 4213\}$$

ヘロト ヘ団ト ヘヨト ヘヨト

E DQC

For $1 \le j < m$ let define $\sum_{m,j} \subset \mathfrak{S}_m$ by:

$$\sigma \in \Sigma_{m,j}$$
 iff

•
$$\sigma(1) = m$$
, and

•
$$\sigma(m+1-j) = m-1$$

Example

•
$$\Sigma_{4,1} = \{4123, 4213\}$$

•
$$\Sigma_{4,2} = \{4132, 4231\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

For $1 \leq p < m$ define $\Sigma_m^p \subset \mathfrak{S}_m$ by

$$\Sigma_m^p = \bigcup_{j=1}^p \Sigma_{m,j}$$

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

•
$$(m, p) = (2, 1)$$

 $\Sigma_2^1 = \{21\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_2^1)) = 1$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

•
$$(m, p) = (2, 1)$$

 $\Sigma_2^1 = \{21\}$ and $card(\mathfrak{S}_n(\Sigma_2^1)) = 1$

•
$$(m,p) = (3,1)$$

 $\Sigma_3^1 = \{\mathbf{312}\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_3^1))$ is the Catalan number

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$(m,p) = (2,1)$$

 $\Sigma_2^1 = \{21\}$ and $card(\mathfrak{S}_n(\Sigma_2^1)) = 1$

•
$$(m,p) = (3,1)$$

 $\Sigma_3^1 = \{\mathbf{312}\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_3^1))$ is the Catalan number

•
$$(m, p) = (3, 2)$$

 $\Sigma_3^2 = \{312, 321\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_3^2)) = 2^{n-1}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$(m, p) = (2, 1)$$

 $\Sigma_2^1 = \{21\}$ and $card(\mathfrak{S}_n(\Sigma_2^1)) = 1$

•
$$(m,p) = (3,1)$$

 $\Sigma_3^1 = \{\mathbf{312}\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_3^1))$ is the Catalan number

•
$$(m,p) = (3,2)$$

 $\Sigma_3^2 = \{\mathbf{312}, \mathbf{321}\} \text{ and } \operatorname{card}(\mathfrak{S}_n(\Sigma_3^2)) = 2^{n-1}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

•
$$(m, p) = (2, 1)$$

 $\Sigma_2^1 = \{21\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_2^1)) = 1$

•
$$(m, p) = (3, 1)$$

 $\Sigma_3^1 = \{312\}$ and $card(\mathfrak{S}_n(\Sigma_3^1))$ is the Catalan number

•
$$(m,p) = (3,2)$$

 $\Sigma_3^2 = \{312, 321\}$ and $\operatorname{card}(\mathfrak{S}_n(\Sigma_3^2)) = 2^{n-1}$

•
$$(m,p) = (4,2)$$

 $\Sigma_4^2 = \{4123, 4213, 4132, 4231\}$ and $card(\mathfrak{S}_n(\Sigma_4^2))$ is the $(n-1)$ th central binomial coefficient $\binom{2n-2}{n-1}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\operatorname{card}(\Sigma_m^p)$$

m∖p	1	2	3	4
2	1	_	_	_
3	Catalan	2 ^{<i>n</i>-1}	—	—
4	Schröder	$\binom{2n-2}{n-1}$	$2 \cdot 3^{n-2}$ A025192	—
5	A054872			6 ⋅ 4 ^{<i>n</i>−3} A084509

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$\operatorname{card}(\Sigma_m^p)$$

m∖p	1	2	3	4
2	1	_	_	_
3	Catalan	2 ^{<i>n</i>-1}	—	_
4	Schröder	$\binom{2n-2}{n-1}$	$2 \cdot 3^{n-2}$ A025192	—
5	A054872			6 ⋅ 4 ^{<i>n</i>−3} A084509

We give a generating function for the set

 $\mathfrak{S}(\Sigma_m^p)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generating trees

Production matrices

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

ヘロン 人間 とくほとく ほとう

₹ 990

Generating trees: how S(Σ^p_m) can be recursively defined?

Production matrices

ヘロン 人間 とくほ とくほ とう

- Generating trees: how S(Σ^p_m) can be recursively defined?
- Production matrices: how this definition can be turned into a generating function?

A succession (or ECO) rule is a formal system consisting of a root e_0 (or axiom) and a set of productions of the form

 $(k) \rightsquigarrow (e_1(k))(e_2(k))\dots(e_k(k))$

Succession rule explains how an object of size n can be uniquely expanded into several objects of size n + 1.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 The sites of π ∈ 𝔅_n are the positions between two consecutive entries, before the first and after the last entry

프 (프)

< 1 × 4

- The sites of π ∈ 𝔅_n are the positions between two consecutive entries, before the first and after the last entry
- For a permutation π ∈ S_n(T), *i* is an *active site* if the permutation obtained from π by inserting n + 1 into its *i*th site is a permutation in S_{n+1}(T); we call such a permutation in S_{n+1}(T) a *son* of π

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- The sites of π ∈ 𝔅_n are the positions between two consecutive entries, before the first and after the last entry
- For a permutation π ∈ G_n(T), *i* is an *active site* if the permutation obtained from π by inserting n + 1 into its *i*th site is a permutation in G_{n+1}(T); we call such a permutation in G_{n+1}(T) a *son* of π
- For any π ∈ 𝔅_n(T), by erasing n in π one obtains a permutation in 𝔅_{n-1}(T); or equivalently, any permutation in 𝔅_n(T) is obtained from a permutation in 𝔅_{n-1}(T) by inserting n in one of its active sites

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- The sites of π ∈ 𝔅_n are the positions between two consecutive entries, before the first and after the last entry
- For a permutation π ∈ S_n(T), *i* is an *active site* if the permutation obtained from π by inserting n + 1 into its *i*th site is a permutation in S_{n+1}(T); we call such a permutation in S_{n+1}(T) a *son* of π
- For any π ∈ 𝔅_n(T), by erasing n in π one obtains a permutation in 𝔅_{n-1}(T); or equivalently, any permutation in 𝔅_n(T) is obtained from a permutation in 𝔅_{n-1}(T) by inserting n in one of its active sites
- We say that the active sites of a permutation π ∈ 𝔅_n(T) are *right justified* if the sites to the right of any active site are also active.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $m \ge 3$ and $1 \le p < m$.

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let $m \ge 3$ and $1 \le p < m$.

• 1 $\in \mathfrak{S}_1(\Sigma_m^p)$ has two active sites and any $\pi \in \mathfrak{S}_n(\Sigma_m^p)$ has its active sites right justified.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Let $m \ge 3$ and $1 \le p < m$.

• 1 $\in \mathfrak{S}_1(\Sigma_m^p)$ has two active sites and any $\pi \in \mathfrak{S}_n(\Sigma_m^p)$ has its active sites right justified.

2 The number of active sites of the permutation σ ∈ S_{n+1}(Σ^p_m) obtained from π ∈ S_n(Σ^p_m) by inserting n + 1 into its ith active site does not depend on π but only on

i, and

• the number k of active sites of π

<ロト < 同ト < 回ト < 回ト = 三

Let $m \ge 3$ and $1 \le p < m$.

• 1 $\in \mathfrak{S}_1(\Sigma_m^p)$ has two active sites and any $\pi \in \mathfrak{S}_n(\Sigma_m^p)$ has its active sites right justified.

2 The number of active sites of the permutation σ ∈ S_{n+1}(Σ^p_m) obtained from π ∈ S_n(Σ^p_m) by inserting n + 1 into its ith active site does not depend on π but only on

• i, and

• the number k of active sites of π

 $\chi_{m,p}(k,i)$ the number of active sites of σ

$$\chi_{m,p}(k,i) = \begin{cases} k+1 & \text{if } k < m-1 \text{ or} \\ k-m+p+2 \le i \le k \\ m-1 & \text{if } k \ge m-1 \text{ and } 1 \le i \le p \\ m+i-p-1 & \text{otherwise.} \end{cases}$$

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Corollary

The succession rule for the set of permutations $\mathfrak{S}_n(\Sigma_m^p)$ is: root (2) rules $(k) \rightsquigarrow$ $\begin{cases} (k+1)^k \text{ if } k < m-1 \\ (m-1)^p(m)(m+1)\dots(k)(k+1)^{m-p-1} \text{ otherwise} \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

•
$$(m, p) = (3, 1)$$
 Dyck rules
root (2)
(k) \rightsquigarrow (2)(3)...(k)(k + 1)
• $(m, p) = (4, 1)$ Schröder rules
root (2)
rules (2) \rightsquigarrow (3)(3)
(k) \rightsquigarrow (3)(4)...(k)(k + 1)(k + 1) if $k \ge 3$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• (m, p) = (4, 2) Grand Dyck rules root (2) rules (2) \rightsquigarrow (3)(3) (k) \rightsquigarrow (3)(3)(4)...(k)(k + 1) if $k \ge 3$ • (m, p) = (5, 2): root (2) rules (2) \rightsquigarrow (3)(3) (3) \rightsquigarrow (4)(4)(4) (k) \rightsquigarrow (4)(4)(5)...(k)(k + 1)(k + 1) if $k \ge 4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• E. Deutsch, L. Ferrari, S. Rinaldi : 2005

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

ヘロン 人間 とくほ とくほ とう

æ 👘

• E. Deutsch, L. Ferrari, S. Rinaldi : 2005

Any succession rule can be expressed as:

- a root ℓ_1
- and a set of productions

$$\{(\ell_u) \rightsquigarrow (\ell_1)^{\nu(u,1)} (\ell_2)^{\nu(u,2)} (\ell_3)^{\nu(u,3)} \dots \}_{u \ge 1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• E. Deutsch, L. Ferrari, S. Rinaldi : 2005

Any succession rule can be expressed as:

- a root ℓ_1
- and a set of productions

$$\{(\ell_u) \rightsquigarrow (\ell_1)^{\nu(u,1)} (\ell_2)^{\nu(u,2)} (\ell_3)^{\nu(u,3)} \ldots \}_{u \ge 1}$$

where

- $\{\ell_1, \ell_2, \ldots\}$ is the set of admissible
- the ultimately zero integer sequence {v(u, k)}_{k≥0} gives the repetition order

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• E. Deutsch, L. Ferrari, S. Rinaldi : 2005

Any succession rule can be expressed as:

- a root ℓ_1
- and a set of productions

$$\{(\ell_u) \rightsquigarrow (\ell_1)^{\nu(u,1)} (\ell_2)^{\nu(u,2)} (\ell_3)^{\nu(u,3)} \ldots \}_{u \ge 1}$$

where

- $\{\ell_1, \ell_2, \ldots\}$ is the set of admissible
- the ultimately zero integer sequence {v(u, k)}_{k≥0} gives the repetition order

The matrix

$$R = [u(i,j)]_{i,j\geq 1}$$

is the production matrix of the succession rule

Dyck rule: root (2) (k) \rightsquigarrow (2)(3)...(k)(k + 1) production matrix:

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Grand Dyck rule root (2) rules (2) \rightsquigarrow (3)(3) (k) \rightsquigarrow (3)(3)(4)...(k)(k + 1) if $k \ge 3$ production matrix:

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The integer sequence corresponding to a succession rule (or equivalently, to a production matrix) is the sequence giving, for each n, the number of objects of size n produced by the succession rule

프 (프)

The integer sequence corresponding to a succession rule (or equivalently, to a production matrix) is the sequence giving, for each n, the number of objects of size n produced by the succession rule

$$\mathfrak{S}_n(\Sigma^p_m)$$

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

프 > 프

root (2)
rules
$$(k) \rightsquigarrow$$

$$\begin{cases} (k+1)^k \text{ if } k < m-1 \\ (m-1)^p(m)(m+1)\dots(k)(k+1)^{m-p-1} \text{ otherwise} \end{cases}$$

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

root (2)
rules
$$(k) \rightsquigarrow$$

$$\begin{cases} (k+1)^k \text{ if } k < m-1 \\ (m-1)^p(m)(m+1)\dots(k)(k+1)^{m-p-1} \text{ otherwise} \end{cases}$$

	г 0	2	0	0		0	0	0	0	··· 7
	0	0	3	0		0	0	0	0	
	0	0	0	4		0	0	0	0	
	:	:	:	:	•.	:	:	:	:	
-										·
$A_{m n} =$	0	0	0	0		m — 2	0	0	0	
<i>,p</i>	0	0	0	0		р	<i>т</i> – <i>р</i> – 1	0	0	
	0	0	0	0		р	1	т — р — 1	0	
	0	0	0	0		р	1	1	<i>m</i> – <i>p</i> – 1	
	:	:	:	:	·.	:	:	:	:	·.
	L ·	•	•	•		•	•	•	•	· _

Elena BARCUCCI, Vincent VAJNOVSZKI Generalized Schröder permutations

For a production matrix *P*, f_P is generating function of the integer sequence associated with *P* u^{\top} is the row vector (100...0)

e is the vector $(1 \ 1 \ 1 \ \dots \ 1)^{\top}$

Theorem (E. Deutsch, L. Ferrari, S. Rinaldi)

Let a, b, c be three nonnegative integers, P and Q two production matrices related by

$$P = \left[egin{array}{cl} b & a \cdot u^{ op} \ c \cdot e & Q \end{array}
ight].$$

Then

$$f_P(x) = \frac{1 + axf_Q(x)}{1 - bx - acx^2f_Q(x)}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Corollary

Let a, b, c be three positive integers and P be an infinite production matrix of the form

$${m P} = \left[egin{array}{cl} {m b} & {m a} \cdot {m u}^{ op} \ {m c} \cdot {m e} & {m P} \end{array}
ight].$$

Then $f_P(x)$ satisfies the quadratic equation

$$acx^{2}f_{P}(x)^{2} - (1 - bx - ax)f_{P}(x) + 1 = 0.$$

Corollary

Let a be an integer and R a production matrix of the form

$$\mathbf{R} = \begin{bmatrix} 1 & a & 0 & 0 & 0 & \dots \\ 1 & 1 & a & 0 & 0 & \dots \\ 1 & 1 & 1 & a & 0 & \dots \\ 1 & 1 & 1 & 1 & a & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Then

$$f_R(x) = \frac{N_a(x)}{2ax^2}$$

where

$$N_a(x) = 1 - (a+1)x - \sqrt{1 + (a-1)^2 x^2 - 2(a+1)x}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Lemma

Let P be a production matrix of the form

$$\mathbf{P} = \begin{bmatrix} b & a & 0 & 0 & 0 & \dots \\ b & 1 & a & 0 & 0 & \dots \\ b & 1 & 1 & a & 0 & \dots \\ b & 1 & 1 & 1 & a & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Then

$$f_P(x) = \frac{2x + N_a(x)}{x(2 - 2bx - bN_a(x))}$$

Main results

Lemma

$$P = \begin{bmatrix} 0 & 2 & 0 & \dots & 0 & 0 & 0 & \dots \\ 0 & 0 & 3 & \dots & 0 & 0 & 0 & \dots \\ & \ddots & & & & & \\ 0 & 0 & 0 & \dots & m-4 & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots & 0 & m-3 & 0 & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 & m-2 & \dots \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & Q \end{bmatrix}$$

Then

$$f_P(x) = \sum_{i=0}^{m-4} (i+1)! \cdot x^i + (m-2)! \cdot x^{m-3} \cdot f_Q(x).$$

The generating function for the succession rule

root (2)
rules (k)
$$\rightsquigarrow \begin{cases} (k+1)^k \text{ if } k < m-1 \\ (m-1)^p(m)(m+1)\dots(k)(k+1)^{m-p-1} \end{cases}$$

is given by

$$\Psi(x) = \sum_{i=0}^{m-4} (i+1)! \cdot x^i + (m-2)! \cdot x^{m-3} \cdot F(x),$$

where

$$F(x) = \frac{2x + N_{m-p-1}(x)}{x(2 - 2px - pN_{m-p-1}(x))}.$$

and

$$N_a(x) = 1 - (a+1)x - \sqrt{1 + (a-1)^2 x^2 - 2(a+1)x}.$$

Elena BARCUCCI, Vincent VAJNOVSZKI

Generalized Schröder permutations

Corollary

The generating function of the sequence $\{\operatorname{card}(\mathfrak{S}_n(\Sigma_m^p))\}_{n\geq 0}$ is $x \cdot \Psi(x)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Corollary

The generating function of the sequence $\{\operatorname{card}(\mathfrak{S}_n(\Sigma_m^p))\}_{n\geq 0}$ is $x \cdot \Psi(x)$.

1

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Corollary

$$\operatorname{card}(\mathfrak{S}_n(\Sigma_{p+1}^p)) = \begin{cases} n! & \text{if } n$$

Particular instances

• card($\mathfrak{S}_n(\Sigma_5^1)$) first values: 0, 1, 2, 6, 24, 114, 600, 3372, 19824, ... Sloane: A054872 generating function: $x \cdot (2 - 2x - \sqrt{1 - 8x + 4x^2})$ • card($\mathfrak{S}_n(\Sigma_5^2)$) first values: 0, 1, 2, 6, 24, 108, 516, 2556, 12972 ... generating function: $x \cdot \left(1 + 2x + 3x \cdot \frac{1 - x - \sqrt{1 - 6x + x^2}}{x + \sqrt{1 - 6x + x^2}}\right)$ • card($\mathfrak{S}_n(\Sigma_5^3)$) first values: 0, 1, 2, 6, 24, 102, 444, 1956, ... generating function: $x \cdot \left(1 + 2x + 6x \cdot \frac{1 - \sqrt{1 - 4x}}{-1 + 3\sqrt{1 - 4x}}\right)$ • card($\mathfrak{S}_n(\Sigma_5^4)$) first values: 0, 1, 2, 6, 24, 96, 384, 1536, 6144, ... Sloane: A084509 generating function: $x \cdot \frac{1-2x-2x^2}{1-4x}$

イロト 不得 とくほ とくほ とうほ