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Abstract

Using generating functions, MacMahon proved in 1916 the remarkable fact that the major
index has the same distribution as the inversion number for multiset permutations, and in
1968 Foata gave a constructive bijection proving MacMahon’s result. Since then, many
refinements have been derived, consisting of adding new constraints or new statistics.

Here we give a new simple constructive bijection between the set of permutations with a
given number of inversions and those with a given major index. We introduce a new statistic,
mix, related to the Lehmer code, and using our new bijection we show that the bistatistic
(mix, INV) is Euler-Mahonian. Finally we introduce the McMahon code for permutations
which is the major-index counterpart of the Lehmer code and show that the two codes are
related by a simple relation.

1 Preliminaries

We say that i is a descent of π ∈ Sn if πi > πi+1 and the descent set of π is the set of its
descents. The pair (i, j) is an inversion of π ∈ Sn if i < j but πi > πj. A statistic on Sn is an
association of an element of N to each permutation in Sn and a bistatistic is a pair of statistics.
For a permutation π ∈ Sn the descent number des, major index MAJ, inversion number INV are
statistics defined by (see, for example, [6, Section 10.6])

des π = card{i | 1 ≤ i ≤ n− 1, πi > πi+1},

MAJπ =
∑

1≤i<n
πi>πi+1

i,

INV π = card{(i, j) | 1 ≤ i < j ≤ n, πi > πj}.

and thus, INV π equals the number of inversions of π.
This note is a revised form of the preliminary conference version [9] and the main results are

Theorems 7, 9 and 13, in Sections 2, 3 and 4, respectively. Theorem 7 establishes a bijection
between the set of permutations with a given number of inversions and those with a given major
index. Theorem 9 relates the descent statistic des with a new statistic mix introduced here,
from which it follows (Corollary 10) that the bistatistic (mix, INV) is Euler-Mahonian. Finally,
we introduce the McMahon code and Theorem 13 relates the Lehmer code with the McMahon
code.
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2 Lehmer’s code and the bijections φ and ψ

An integer sequence t1t2 . . . tn is said to be subexcedent if 0 ≤ ti ≤ i−1 for 1 ≤ i ≤ n, and the set
of length-n subexcedent sequences is denoted by Sn; so Sn = {0}×{0, 1}× . . .×{0, 1, . . . , n−1}.
The Lehmer code [5] is a bijection code : Sn → Sn which maps each permutation π = π1π2 . . . πn

to a subexcedent sequence t1t2 . . . tn where, for all i, 1 ≤ i ≤ n, ti is the number of inversions
(j, i) in π (or equivalently, the number of entries in π larger than πi and on its left). In this
case, INVπ =

∑n
i=1 ti.

Let permutations act on indices, i.e., for σ = σ1 σ2 . . . σn and τ = τ1 τ2 . . . τn two per-
mutations in Sn, σ · τ = στ1 στ2 . . . στn

. For a fixed integer n, let k and u be two integers,
0 ≤ k < u ≤ n, and define ρu,k ∈ Sn as the permutation obtained from the identity in Sn after
a left circular shift of the segment of length k + 1 ending at position u. In two line notation we
have

ρu,k =

(
1 2 · · · u− k − 1 u− k u− k + 1 · · · u− 1 u u+ 1 · · · n

1 2 · · · u− k − 1 u− k + 1 u− k + 2 · · · u u− k u+ 1 · · · n

)

.

For example, in S5 we have: ρ3,1 = 132 4 5, ρ3,2 = 231 4 5 and ρ5,3 = 134 5 2 (the rotated
elements are underlined). Since the permutation ρu,k has its first u − 1 entries in increasing

order so does the permutation ρn,tn · ρn−1,tn−1
· . . . · ρj,tj =

∏j
i=n ρi,ti , for all j, 1 ≤ j ≤ n, and

0 ≤ ti ≤ i− 1. Thus we have

Remark 1. The function t1t2 . . . tn 7→
∏1

i=n ρi,ti is the inverse of code : Sn → Sn and so a
bijection from Sn onto Sn.

Therefore, every permutation π ∈ Sn can be recovered from its Lehmer code t = t1t2 . . . tn ∈
Sn by (see Figure 1 (a) for an example)

π = ρn,tn · ρn−1,tn−1
· . . . · ρi,ti · . . . · ρ2,t2 · ρ1,t1

=
1∏

i=n

ρi,ti .

Clearly INV

∏1
i=n ρi,ti =

∑n
i=1 ti.

Let n, k and u be three integers as above (0 ≤ k < u ≤ n) and define [[u, k]] ∈ Sn as the
permutation obtained after k right circular shifts of the length-u prefix of the identity in Sn. In
two line notation we have

[[u, k]] =

(
1 2 · · · k k + 1 · · · u u+ 1 · · · n

u− k + 1 u− k + 2 · · · u 1 · · · u− k u+ 1 · · · n

)

.

For example, in S5 we have: [[3, 1]] = 3 1 2 4 5, [[3, 2]] = 2 3 1 4 5 and [[5, 3]] = 3 4 5 1 2 (the
rotated elements are underlined). Obviously, [[u, p]] · [[u, r]] = [[u, p + r]], with addition taken
modulo u.

Let ψ : Sn → Sn be the function defined by
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1 2 3 4 5 61 2 4 5 6 3�6;32 4 5 6 13�5;425 6 41 3�4;25 6 24 1 3�3;26 5 2 4 1 3�2;16 5 2 4 1 3�1;0

1 2 3 4 5 64 5 61 2 3[[6; 3]]5 6 1 2 43[[5; 4]]1 2 5 64 3[[4; 2]]2 5 1 64 3[[3; 2]]5 2 1 64 3[[2; 1]]5 2 1 64 3[[1; 0]]
(a) (b)

Figure 1: (a) The construction of the permutation ρ6,3 ·ρ5,4 ·ρ4,2 ·ρ3,2 ·ρ2,1 ·ρ1,0 = 6 5 2 4 1 3 ∈ S6 having
the Lehmer code t = 0 1 2 2 4 3; rotated segments are underlined. (b) The construction of the permutation
ψ(012243) = [[6, 3]] · [[5, 4]] · [[4, 2]] · [[3, 2]] · [[2, 1]] · [[1, 0]] = 5 2 1 6 4 3 ∈ S6 from the identity by successive
prefix rotations; in each permutation descents are underlined. The permutation obtained in (b) is the
image through φ of the one obtained in (a).

ψ(t1t2 . . . tn) = [[n, tn]] · [[n− 1, tn−1]] · . . . · [[i, ti]] · . . . · [[2, t2]] · [[1, t1]]

=
1∏

i=n

[[i, ti]].

(See Figure 1 (b) for an example.)
The next lemma says that every permutation in Sn can be uniquely written as

∏1
i=n[[i, ti]]

for some ti’s. Thus, {ρi,k}0≤k<i≤n and {[[i, k]]}0≤k<i≤n are both generating sets for Sn; and, as
we will show later, [[i, k]] can be viewed as a ‘MAJ counterpart’ of ρi,k.

Lemma 1. The function ψ defined above is a bijection.

Proof. Firstly, ψ is an injective function. Indeed, let s = s1s2 . . . sn and t = t1t2 . . . tn be two
sequences in Sn with s 6= t and let σ = ψ(s) and τ = ψ(t). If j is the rightmost position with
sj 6= tj , then we have:

•
∏j+1

i=n[[i, si]] =
∏j+1

i=n[[i, ti]], and

3



•
∏j

i=n[[i, si]] 6=
∏j

i=n[[i, ti]].

For i < j, [[i, si]] and [[i, ti]] act only on the first i entries of permutations in Sn and so σj 6= τj .
Finally, cardinality considerations show that ψ is a bijection. Sn SnSncode  �

Figure 2: φ = ψ ◦
code.

The map φ : Sn → Sn defined by φ(π) = ψ(t) with t being the Lehmer
code of π is a bijection and φ = ψ ◦ code, see Figure 2. Now we introduce the
notion of k-separate permutations and give a technical lemma.

Definition 2. We say that π ∈ Sn is k-separate, 1 ≤ k ≤ n, if there exists
an ℓ such that π can be written as the concatenation of three ‘segments’ (the
first of them possibly empty)

π = π1π2 . . . πℓ
︸ ︷︷ ︸

πℓ+1πℓ+2 . . . πk−1πk
︸ ︷︷ ︸

πk+1 . . . πn
︸ ︷︷ ︸

(1)

with

• πi < πj for all i and j, 1 ≤ i < j ≤ ℓ or ℓ+ 1 ≤ i < j ≤ k, and

• πi > πj for all i and j, 1 ≤ i ≤ ℓ < j ≤ k.

Figure 4 shows the matrix representation of a separate permutation. Note that if π is k-separate,
then π has at most one descent to the left of k, and (with the notations above) this descent is
ℓ, if there is any. Also, every k-separate permutation is also j-separate for 1 ≤ j < k and every
permutation is 1-separate.

Lemma 3. Let π ∈ Sn be k-separate, 1 < k ≤ n. For an i and a v with 0 < v < i < k let σ
denote the permutation π · [[i, v]].

a) If π has no descents to the left of k, then v is the unique descent in σ to the left of k.

Otherwise, let ℓ be the (unique) descent in π to the left of k. In this case:

b) if v ≤ i− ℓ, then ℓ+ v is the unique descent in σ to the left of k;

c) if v > i− ℓ, then σ has two descents to the left of k, namely i and v − i+ ℓ.

Proof. In the case a) the shape of π is

π = π1π2 . . . πk−1πk
︸ ︷︷ ︸

πk+1 . . . πn
︸ ︷︷ ︸

with πi < πj for 1 ≤ i < j ≤ k. In this case v is a descent of σ (with σv = πi) and no other
descent is produced and so the case a) holds.

Now suppose that ℓ is the (unique) descent in π to the left of k. Thus π is the concatenation
of three segments, as in relation (1) of Definition 2.

When v ≤ i− ℓ, then σ has a single descent to the left of k, namely ℓ+ v (with σℓ+v = πℓ);
and the case b) holds.
Finally, when v > i− ℓ, then σ has two descents to the left of k: i (with σi = πi−v) and v− i+ ℓ

(with σv−i+ℓ = πℓ), and the case c) holds.

The following two corollaries are consequences of the previous lemma.
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r := 0;
for i := n downto 1 do

r := r + ti;
if i ≤ r

then bi := 1; r := r − i;
else bi := 0;
endif

enddo

Figure 3: Algorithm computing the characteristic vector b = b1b2 . . . bn−1 of the descent set of π =
∏

1

i=n
[[i, ti]].
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Figure 4: The permutation 9 11 12 1 3 4 6 8 5 10 2 7∈ S12 is 8-separate (and so j-separate for 1 ≤ j < 8).

Corollary 4. For a given t = t1t2 . . . tn ∈ Sn, the algorithm in Figure 3 computes in linear time
the characteristic vector of the descent set of ψ(t) ∈ Sn; that is, the binary vector b with bi = 1
if and only if i is a descent of ψ(t).

Proof. After each iteration on i, bi is set to 1 if and only if i is a descent of ψ(t), and r 6= 0 is
the leftmost descent in the permutation

∏i
j=n[[j, tj ]].

In Table 1 there are a few examples where the characteristic vectors of the descent sets are
given in the second column.

In particular, Lemma 3 gives the following corollaries.

Corollary 5. If π is k-separate, k > 1, then for all i and v, 0 ≤ v < i < k, π ·[[i, v]] is i-separate.
In addition MAJ (π · [[i, v]]) = MAJπ + v.

Corollary 6. For every t = t1t2 . . . tn ∈ Sn, we have MAJ

∏1
i=n[[i, ti]] =

∑n
i=1 ti.

Proof. By iteratively applying the previous corollary to
∏i

j=n[[j, tj ]].

Theorem 7. For every π ∈ Sn, we have MAJφ(π) = INV π.

Proof. Let t = t1t2 . . . tn be the Lehmer code of π. By definition φ(π) =
∏1

i=n[[i, ti]] and,
applying the above corollary the statement holds.
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A consequence of the previous theorem is the following well-known result [7, 3]:

Corollary 8.
∑

σ∈Sn
qMAJ σ =

∑

σ∈Sn
qINV σ, that is, the statistics MAJ and INV are equidistributed

on Sn, and so both are Mahonian.

3 The mix statistic

For a sequence t = t1t2 . . . tn ∈ Sn, let b = b1b2 . . . bn−1 be a binary sequence with
∑n−1

j=1 j · bj =
∑n

j=1 tj. Obviously, b is not uniquely determined by t, but if we impose the condition that
b1, b2, . . . , bn−1 satisfy

n∑

j=i

tj − i <

n−1∑

j=i

j · bj ≤
n∑

j=i

tj

for all i ≥ 1, then b becomes unique and we call this binary sequence the multi-radix (binary)
array of t. Note that the same multi-radix array can correspond to several subexcedent arrays,
see Table 1.

Now we define the statistic mix on Sn and on Sn. For t ∈ Sn, mix t is the number of 1-bits
in its multi-radix array; and by extension, for π ∈ Sn we define mix π = mix t, where t is the
Lehmer code of π. Formally, mixπ = mix code(π) and we extend the des and mix statistics to
set-valued functions.

Let D : Sn → 2{1,2,...,n−1} be the set-valued function which maps a permutation to its descent
set (2{1,2,...,n−1} denotes the set of all subsets of {1, 2, . . . , n− 1}). D(π) is the descent set of π
and we have

des π = card D(π),

MAJπ =
∑

i∈D(π)

i.

Similarly, define M : Sn → 2{1,2,...,n−1} as the set of positions of 1-bits in the multi-radix array
of the Lehmer code of π. By definition we have

mixπ = card M(π),

INV π =
∑

i∈M(π)

i.

Theorem 9. For every subset T of {1, 2, · · · , n− 1}, we have

card{π ∈ Sn |M(π) = T} = card{τ ∈ Sn |D(τ) = T}.

Proof. It is easy to check that the multi-radix array of the sequence t = t1t2 . . . tn in Sn is
precisely the characteristic vector b of the descent set of

∏1
i=n[[i, ti]] ∈ Sn computed by the

algorithm in Figure 3; and in this algorithm r =
∑n

j=i tj −
∑n−1

j=i j · bj after each iteration on i.
It follows that M(π) = D(φ(π)) for all π ∈ Sn, and the statement of the theorem holds.

In particular, we have

Corollary 10. The statistic mix is Eulerian, that is, it has the same distribution as des.
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multi-radix
t sequence of t ψ(t)

0 0 0 1 4 1 0 0 1 5 2 3 4 1

0 0 0 2 3 1 0 0 1 5 1 3 4 2

0 0 0 3 2 1 0 0 1 5 1 2 4 3

0 0 1 0 4 1 0 0 1 4 2 3 5 1

0 0 1 1 3 1 0 0 1 4 1 3 5 2

0 0 1 2 2 1 0 0 1 4 1 2 5 3

0 0 1 3 1 1 0 0 1 3 1 2 5 4

0 0 2 0 3 0 1 1 0 4 5 3 1 2

0 0 2 1 2 0 1 1 0 4 5 2 1 3

0 0 2 2 1 0 1 1 0 3 5 2 1 4

0 0 2 3 0 0 1 1 0 3 4 2 1 5

0 1 0 0 4 1 0 0 1 3 2 4 5 1

0 1 0 1 3 1 0 0 1 3 1 4 5 2

0 1 0 2 2 1 0 0 1 2 1 4 5 3

0 1 0 3 1 1 0 0 1 2 1 3 5 4

0 1 1 0 3 0 1 1 0 3 5 4 1 2

0 1 1 1 2 0 1 1 0 2 5 4 1 3

0 1 1 2 1 0 1 1 0 2 5 3 1 4

0 1 1 3 0 0 1 1 0 2 4 3 1 5

0 1 2 0 2 0 1 1 0 1 5 4 2 3

0 1 2 1 1 0 1 1 0 1 5 3 2 4

0 1 2 2 0 0 1 1 0 1 4 3 2 5

Table 1: The 22 sequences t = t1t2t3t4t5 in S5 with t1 + t2 + t3 + t4 + t5 = 5, their corresponding
multi-radix sequences and images ψ(t) with MAJψ(t) = 5. The positions where the multi-radix array
equals 1 are precisely the descents of the corresponding permutation.

A bistatistic is Euler-Mahonian if it has the same joint distribution as (des,MAJ). A conse-
quence of Theorem 9 is

Corollary 11. The bistatistic (mix, INV) is Euler-Mahonian, or equivalently,
∑

σ∈Sn

tmix σqINV σ =
∑

σ∈Sn

tdes σqMAJ σ.

So, the statistic mix can be seen just as a new ‘Eulerian partner for inversions’; such a
‘partner’ already exists [8] and it is different from the one presented here. Another Euler-
Mahonian bistatistic is (exc, den), with exc being the excedance number and den the Denert
statistic [1, p. 66], thus den is a ‘Mahonian partner for the excedance number’, see [4].

4 From Lehmer code to McMahon code

Let π ∈ Sn and s = s1s2 . . . sn be the subexcedent sequence such that π =
∏1

i=n[[i, si]]. Since s is
related to MAJ statistic (see Corollary 6) introduced by McMahon in [7] we call s the McMahon
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code of π. Equivalently, the McMahon code of π is ψ−1(π). Theorem 13 below answers the
following question: how are the Lehmer code and McMahon code related? Surprisingly, the
techniques involved have both a Gray-code and a data-compression flavor.

Definition 12. Let ∆ : Sn → Sn be the function defined by: if t = t1t2 . . . tn ∈ Sn, then ∆(t) is
the sequence s1s2 . . . sn ∈ Sn with

• sn = tn, and

• si = (ti − ti+1) mod i, for 1 ≤ i ≤ n− 1.

Clearly, for any t in Sn, ∆(t) is in Sn, and so ∆ is well defined. Also ∆ is bijective with the
inverse, ∆−1, defined by: if s1s2 . . . sn ∈ Sn, then ∆−1(s) is the sequence t = t1t2 . . . tn ∈ Sn

with

• tn = sn, and

• ti = (ti+1 + si) mod i, for 1 ≤ i ≤ n− 1.

For example, in S6, we have ∆(0 1 2 0 2 3) = 0 1 2 2 4 3. Figure 1 (b) shows the construction
of 5 2 1 6 4 3 ∈ S6 from its McMahon code 0 1 2 2 4 3.

The function ∆ is a slight variation of a well-known transformation in Gray code theory.
For an integer k written in binary as b1b2 . . . bn, with the most significant bit b1, the kth binary
sequence in binary reflected Gray code order is g = g1g2 . . . gn, where

• g1 = b1, and

• gi = bi−1 ⊕ bi for 1 < i ≤ n

with ⊕ being addition (or, equivalently, substraction) modulo 2. For more details see [2] and
the references therein. For instance, for k = 12 = (1100)2, the 12th binary sequence in Gray
code order is 1010; and for k = 451 = (111000011)2 , the 451th binary sequence in Gray code
order is 100100010. The above transformation b 7→ g maps runs (consecutive occurrences of the
same value) into sequences of 0’s preceded by a 1; in the binary case it coincides with Move To
Front data compression pre-processing transformation.

Theorem 13. If π ∈ Sn has its Lehmer code t = t1t2 . . . tn, then its McMahon code is ∆(t),
that is, π =

∏1
i=n[[i, si]] with s1s2 . . . sn = ∆(t).

Proof. Firstly, note that for three integers n, k and u with 0 ≤ k < u ≤ n,

ρu,k = [[u, k]] · [[u− 1, u− 1 − k]].

But [[v, p]]·[[v, r]] = [[v, p+r]], with addition taken modulo v, and the statement holds by iterating
this relation for the Lehmer code of π.

As a consequence of this theorem we have the following corollary and the alternative defini-
tion: ψ = (∆ ◦ code)−1, see Figure 5.

Corollary 14. For any π ∈ Sn, the McMahon code s = s1s2 . . . sn of π satisfies:

• si = card {j | 1 ≤ j < i, πj ∈ [πi, πi+1]} if πi < πi+1,

• si = card {j | 1 ≤ j < i, πj 6∈ [πi+1, πi]} elsewhere,

with the convention that πn+1 = n+ 1.
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Sn SnSn �  code�1
Figure 5: ψ = code−1 ◦
∆−1 = (∆ ◦ code)−1.

For example,

• ∆(0 1 2 2 4 3) = 0 1 0 2 1 3, and so in S6 we have ρ6,3 · ρ5,4 · ρ4,2 · ρ3,2 ·
ρ2,1 · ρ1,0 = [[6, 3]] · [[5, 1]] · [[4, 2]] · [[3, 0]] · [[2, 1]] · [[1, 0]] = 6 5 2 4 1 3,
and

• ∆−1(0 1 2 2 4 3) = 0 1 2 0 2 3, and so in S6 we have [[6, 3]]·[[5, 4]]·[[4, 2]]·
[[3, 2]] · [[2, 1]] · [[1, 0]] = ρ6,3 · ρ5,2 · ρ4,0 · ρ3,2 · ρ2,1 · ρ1,0 = 521 6 4 3.

See again Figure 1.
For a subexcedent sequence t = t1t2t3 . . . tn−1tn ∈ Sn we define its

complement tc as the subexcedent sequence t1(1− t2)(2− t3) . . . (n− 2− tn−1)(n− 1− tn); and
for a permutation π = π1π2π3 . . . πn−1πn ∈ Sn we define its complement as πc = (n + 1 −
π1)(n+ 1 − π2)(n+ 1 − π3) . . . (n+ 1 − πn−1)(n+ 1− πn). It is easy to see that for any t ∈ Sn,
code−1(tc) = (code−1(t))c and we will show that the complement operator commutes with ∆,
∆−1 and ψ.

Lemma 15. For any t ∈ Sn, we have

(i) ∆(tc) = (∆(t))c,

(ii) ∆−1(tc) = (∆−1(t))c,

(iii) ψ(tc) = (ψ(t))c.

Proof. (i) Let s = s1s2 . . . sn = ∆(tc) and s′ = s′1s
′
2 . . . s

′
n = (∆(t))c. Clearly, sn = s′n =

(n− 1) − tn and for i < n,

si = (i− 1 − ti) − (i− ti+1) mod i

= ti+1 − ti − 1 mod i,

and

s′i = i− 1 − (ti − ti+1) mod i

= ti+1 − ti − 1 mod i,

and so s = s′.
The proof of point (ii) is similar to that of point (i).
(iii) The statement results from the following equalities:

ψ(tc) = (code−1 ◦ ∆−1)(tc)

= code−1(∆−1(t))c

= (code−1(∆−1(t)))c

= (ψ(t))c.

Corollary 16.

• D(ψ(tc)) = {1, 2, . . . , n− 1} \ D(ψ(t)),

• M(code−1(t)) = D((code−1 ◦ ∆−1)(t)).

Finally, we conclude with the following question: can the previous results be naturally general-
ized to multiset permutations?
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