A new Euler-Mahonian constructive bijection

Vincent VAINOVSZKI
LE2I, Université de Bourgogne
BP 47870, 21078 Dijon Cedex, France
vvajnov@u-bourgogne.fr

March 19, 2011

Abstract

Using generating functions, MacMahon proved in 1916 the remarkable fact that the major
index has the same distribution as the inversion number for multiset permutations, and in
1968 Foata gave a constructive bijection proving MacMahon’s result. Since then, many
refinements have been derived, consisting of adding new constraints or new statistics.

Here we give a new simple constructive bijection between the set of permutations with a
given number of inversions and those with a given major index. We introduce a new statistic,
mix, related to the Lehmer code, and using our new bijection we show that the bistatistic
(mix, Inv) is Euler-Mahonian. Finally we introduce the McMahon code for permutations
which is the major-index counterpart of the Lehmer code and show that the two codes are
related by a simple relation.

1 Preliminaries

We say that i is a descent of m € &, if m; > m;11 and the descent set of w is the set of its
descents. The pair (i, ) is an inversion of 7 € &, if i < j but m; > m;. A statistic on &,, is an
association of an element of N to each permutation in &,, and a bistatistic is a pair of statistics.
For a permutation 7 € &,, the descent number des, major index MAJ, inversion number INV are
statistics defined by (see, for example, [6, Section 10.6])

desm=card{i|1<i<n-—1,m >mi1},

MAJT = E 1,

1<i<n
T >Ti4+1

INV 7T = card{(,j) | 1 <i<j<n,m >}

and thus, INV 7 equals the number of inversions of 7.

This note is a revised form of the preliminary conference version [9] and the main results are
Theorems 7, 9 and 13, in Sections 2, 3 and 4, respectively. Theorem 7 establishes a bijection
between the set of permutations with a given number of inversions and those with a given major
index. Theorem 9 relates the descent statistic des with a new statistic mix introduced here,
from which it follows (Corollary 10) that the bistatistic (mix,INV) is Euler-Mahonian. Finally,
we introduce the McMahon code and Theorem 13 relates the Lehmer code with the McMahon
code.



2 Lehmer’s code and the bijections ¢ and v

An integer sequence t1ts ... t, is said to be subexcedent if 0 < t; <i—1 for 1 <4 < n, and the set
of length-n subexcedent sequences is denoted by Sp; so S, = {0} x {0,1} x...x{0,1,...,n—1}.
The Lehmer code [5] is a bijection code : &,, — S,, which maps each permutation 7 = myma... T,
to a subexcedent sequence tits...t, where, for all i, 1 < i < n, t; is the number of inversions
(j,i) in 7 (or equivalently, the number of entries in 7 larger than 7; and on its left). In this
case, INVT = > " | ;.

Let permutations act on indices, i.e., for ¢ = 0109 ... 0, and 7 = 7179 ... T, two per-
mutations in &,, 0 -7 = 0, 0y ... 0,. For a fixed integer n, let k and u be two integers,
0 <k <u <n, and define p, ; € G,, as the permutation obtained from the identity in &,, after
a left circular shift of the segment of length k + 1 ending at position . In two line notation we
have

(1 2 - u—-k-1 u—k u—k+1 -+ uw-—1 U u+1l - n
Puk = 1 2 u—k—-—1 v—-k+1 u—-k+2 --- U v—k v+l --- n )~

For example, in &5 we have: p31 = 13245, p3go =23145 and ps3 = 13452 (the rotated
elements are underlined). Since the permutation p, j has its first u — 1 entries in increasing
order so does the permutation pnt, - Pn—1,t, 1 =+ Pjt; = Hi:n pit;, for all j, 1 < j <n, and
0<t; <7—1. Thus we have

Remark 1. The function tite...t, — Hzlzn pit; 15 the inverse of code : &, — S, and so a
bijection from S, onto &,.

Therefore, every permutation m € &,, can be recovered from its Lehmer code t = t1ty.. .1, €
Sp by (see Figure 1 (a) for an example)

T = Pty Pn—1tn_1 "+ Pit; "+ P2tz * Plty
1
= I
i=n

Clearly INV H;L:n Piti = D iy ti-

Let n, k and u be three integers as above (0 < k < u < n) and define [[u, k]| € &,, as the
permutation obtained after k right circular shifts of the length-u prefix of the identity in &,,. In
two line notation we have

[u, k] = 1 2 ek kE+1 - v u+l -+ n
e \u—-k+1 u—-k+2 -~ w1 - u—k u+l -~ n )’

For example, in &5 we have: [[3,1]] = 31245, [[3,2]] = 23145 and [[5,3]] = 34512 (the
rotated elements are underlined). Obviously, [[u,p] - [[u,7]] = [[u,p + ]|, with addition taken
modulo u.

Let ¢ : S, — &, be the function defined by



123456 123456
P6,3 6, 3]
124563 456123
P54 [5.4]
245613 561243
P4,2 [4.2]
256413 125643
P32 [3.2]
562413 251643
P21 [2.1]
652413 521643
£1,0 L, 0]
652413 521643

(a) (b)

Figure 1: (a) The construction of the permutation pe 3-ps.4-pa,2-ps,2-p2.1-p1,0 =652413 € S having
the Lehmer code t = 01224 3; rotated segments are underlined. (b) The construction of the permutation
1(012243) = [[6, 3] - [[5,4] - [[4,2] - [[3, 2] - [[2,1]] - [[1,0]] = 521643 € Sg from the identity by successive
prefix rotations; in each permutation descents are underlined. The permutation obtained in (b) is the
image through ¢ of the one obtained in (a).

Bltts . tn) = [motall [0 = Lt a]l oo [isti] oo [2.80] - [1, 4]

= [Ttat.

i=n

(See Figure 1 (b) for an example.)

The next lemma says that every permutation in &,, can be uniquely written as Hllzn le, t:]]
for some ¢;’s. Thus, {p;  to<k<i<n and {[[, k]| Jo<k<i<n are both generating sets for &,; and, as
we will show later, [[i,k]] can be viewed as a ‘MAJ counterpart’ of p; .

Lemma 1. The function 1 defined above is a bijection.

Proof. Firstly, v is an injective function. Indeed, let s = s1s2...s, and t = t1ty...%, be two
sequences in S,, with s # ¢t and let o = ¥(s) and 7 = ¢(¢). If j is the rightmost position with
sj # tj, then we have:

o THZ, Ml 5] = T2, (0. #], and



i HZ:n [[% SZ]] #* HZ:n [[% tl]]

For i < j, [[¢,s;]] and [[,;]] act only on the first ¢ entries of permutations in &,, and so o; # ;.
Finally, cardinality considerations show that 1 is a bijection. O

The map ¢ : &,, — S,, defined by ¢(7) = 1(¢t) with ¢ being the Lehmer

code of 7 is a bijection and ¢ = ¥ o code, see Figure 2. Now we introduce the
notion of k-separate permutations and give a technical lemma. code
Definition 2. We say that m € G,, is k-separate, 1 < k < n, if there exists P’ &
an ¢ such that w can be written as the concatenation of three ‘segments’ (the '
first of them possibly empty) CH

T =TT o T W14 -« - T 1T Tht1 -« - - Tp, (1) Figure 2: ¢ = 9 o

code.

with

o mp<mjforalliandj, 1<i<j<lorl+1<i<j<k,and
o m; >mj foralliandj, 1 <i</l<j<k.

Figure 4 shows the matrix representation of a separate permutation. Note that if 7 is k-separate,
then 7 has at most one descent to the left of &k, and (with the notations above) this descent is
¢, if there is any. Also, every k-separate permutation is also j-separate for 1 < j < k and every
permutation is 1-separate.

Lemma 3. Let 1 € G,, be k-separate, 1 < k <n. For ani and av with 0 < v <i <k leto
denote the permutation T - [[i,v]].

a) If  has no descents to the left of k, then v is the unique descent in o to the left of k.
Otherwise, let { be the (unique) descent in  to the left of k. In this case:

b) if v<i—{, then £ + v is the unique descent in o to the left of k;
¢) if v>i—4{, then o has two descents to the left of k, namely i and v —i+¢.

Proof. In the case a) the shape of 7 is

T=T1T2 ... TEk—1TE Tk41.--Tn

with m; < mj for 1 <i < j < k. In this case v is a descent of ¢ (with o, = m;) and no other
descent is produced and so the case a) holds.

Now suppose that ¢ is the (unique) descent in 7 to the left of k. Thus 7 is the concatenation
of three segments, as in relation (1) of Definition 2.

When v < i — ¢, then o has a single descent to the left of k, namely ¢ + v (with oy4, = 7¢);
and the case b) holds.
Finally, when v > i — ¢, then o has two descents to the left of k: ¢ (with o; = m;—,) and v — i+ ¢
(with o,_;1¢ = 1), and the case ¢) holds. O

The following two corollaries are consequences of the previous lemma.



r = 0;

for ¢ :=n downto 1 do
ri=1r4+t;
ife<r
thenb;, :=1;r:=7r —1;
else b; := 0;
endif

enddo

Figure 3: Algorithm computing the characteristic vector b = b1by...b,—1 of the descent set of 7 =

[T [, ti])-

[

Figure 4: The permutation 911121346851027 € G129 is 8-separate (and so j-separate for 1 < j < 8).

Corollary 4. For a givent = tity...t, € Sy, the algorithm in Figure 3 computes in linear time
the characteristic vector of the descent set of ¥ (t) € &,; that is, the binary vector b with b; = 1
if and only if i is a descent of ¥(t).

Proof. After each iteration on 4, b; is set to 1 if and only if 4 is a descent of ¥(t), and r # 0 is
the leftmost descent in the permutation []:_, [7,¢;]- O

In Table 1 there are a few examples where the characteristic vectors of the descent sets are
given in the second column.
In particular, Lemma 3 gives the following corollaries.

Corollary 5. If 7 is k-separate, k > 1, then for alli and v, 0 < v < i < k, 7-[[i,v] is i-separate.
In addition MAJ (7 - [[i,v]]) = MAJT + v.

Corollary 6. For every t = tity...1, € Sy, we have MAJ H}Zn[[z,tl]] =3t

Proof. By iteratively applying the previous corollary to []_, [/, t;]]- O
Theorem 7. For every m € &,,, we have MAJ ¢(m) = INV T.

Proof. Let t = tity...t, be the Lehmer code of . By definition ¢(x) = []i_,[[i,t:]] and,
applying the above corollary the statement holds.
U



A consequence of the previous theorem is the following well-known result [7, 3]:

Corollary 8. > s ¢"W7 =3 cs, a7, that is, the statistics MAJ and INV are equidistributed
on G, and so both are Mahonian.

3 The mix statistic

For a sequence t = t1ty...t, € Sy, let b = b1bs...b,_1 be a binary sequence with Z?;llj by =
2?21 tj. Obviously, b is not uniquely determined by ¢, but if we impose the condition that
bl, bg, ey bn,1 satisfy

n n—1 n
E tj — 1< E J- bj < E t;
j=i j=i j=i

for all ¢ > 1, then b becomes unique and we call this binary sequence the multi-radiz (binary)
array of t. Note that the same multi-radix array can correspond to several subexcedent arrays,
see Table 1.

Now we define the statistic mix on S,, and on &,,. For t € S,,, mixt is the number of 1-bits
in its multi-radix array; and by extension, for 7 € &,, we define mixm = mixt, where t is the
Lehmer code of 7. Formally, mixm = mix code(m) and we extend the des and mix statistics to
set-valued functions.

Let D : &,, — 2{1:2-n=1} he the set-valued function which maps a permutation to its descent
set (281271} denotes the set of all subsets of {1,2,...,n — 1}). D(x) is the descent set of 7
and we have

desm = card D(r),

MAJT = E 7.

i€D(m)

Similarly, define M : &,, — 2{1:2--n=1} a5 the set of positions of 1-bits in the multi-radix array
of the Lehmer code of w. By definition we have

mix 7 = card M(7),

INVT = g 7.

1€EM(m)
Theorem 9. For every subset T' of {1,2,--- ,n — 1}, we have
card{m € &, |M(7) =T} = card{r € 6,,|D(7) =T}.

Proof. 1t is easy to check that the multi-radix array of the sequence t = t1ty...¢, in S, is
precisely the characteristic vector b of the descent set of [[}_, [[i,#;]] € &, computed by the

algorithm in Figure 3; and in this algorithm r = > 7%_;¢; — Z?;Z-l J - bj after each iteration on i.
It follows that M(7) = D(¢(m)) for all # € &,,, and the statement of the theorem holds. O

In particular, we have

Corollary 10. The statistic mix is Eulerian, that is, it has the same distribution as des.



multi-radix
t sequence of t | 1)(t)
00014 1001 52341
00023 1001 51342
00032 1001 51243

00104 1001 42351
00113 1001 41352
00122 1001 41253
00131 1001 31254

00203 0110 45312
00212 0110 45213
00221 0110 35214
00230 0110 34215

01004 1001 32451
01013 1001 31452
01022 1001 21453
01031 1001 21354
01103 0110 35412

01112 0110 25413
01121 0110 25314
01130 0110 24315
01202 0110 15423
01211 0110 15324
01220 0110 14325

Table 1: The 22 sequences t = titotstats in S5 with ¢ + to + t3 + t4 + t5 = 5, their corresponding
multi-radix sequences and images 1(t) with mMast(t) = 5. The positions where the multi-radix array
equals 1 are precisely the descents of the corresponding permutation.

A bistatistic is Fuler-Mahonian if it has the same joint distribution as (des,MAJ). A conse-
quence of Theorem 9 is

Corollary 11. The bistatistic (mix,INV) is Euler-Mahonian, or equivalently,
Z tmixaqlNVU _ Z tdesaqMAJU'
oe6, €6y

So, the statistic mix can be seen just as a new ‘Eulerian partner for inversions’; such a
‘partner’ already exists [8] and it is different from the one presented here. Another Euler-
Mahonian bistatistic is (exc,den), with exc being the excedance number and den the Denert
statistic [1, p. 66], thus den is a ‘Mahonian partner for the excedance number’, see [4].

4 From Lehmer code to McMahon code

Let m € G,, and s = s183. .. s, be the subexcedent sequence such that m = Hzlzn ¢, si]]. Since s is
related to MAJ statistic (see Corollary 6) introduced by McMahon in [7] we call s the McMahon



code of m. Equivalently, the McMahon code of 7 is ¢~ !(7). Theorem 13 below answers the
following question: how are the Lehmer code and McMahon code related? Surprisingly, the
techniques involved have both a Gray-code and a data-compression flavor.

Definition 12. Let A : S,, — S, be the function defined by: if t = tity...t, € Sy, then A(t) is
the sequence $183...8y € Sy with

e s, =1t,, and
o 5;,=(ti —tiy1) modi, for1 <i<n-—1.

Clearly, for any t in S,,, A(t) is in S, and so A is well defined. Also A is bijective with the
inverse, A~!, defined by: if s152...5, € Sy, then A~!(s) is the sequence t = tity...t, € S,
with

e t, = s,, and
o t; = (tit1+8;) modi, forl <i<n-—1.

For example, in Sg, we have A(012023) =012243. Figure 1 (b) shows the construction
of 521643 € &g from its McMahon code 01224 3.

The function A is a slight variation of a well-known transformation in Gray code theory.
For an integer k written in binary as b1bs ... b,, with the most significant bit b;, the kth binary
sequence in binary reflected Gray code order is g = g192 - . . gn, Where

.glzbluand
e g;=b_1®bforl<i<n

with @ being addition (or, equivalently, substraction) modulo 2. For more details see [2] and
the references therein. For instance, for kK = 12 = (1100)2, the 12th binary sequence in Gray
code order is 1010; and for £ = 451 = (111000011)2, the 451th binary sequence in Gray code
order is 100100010. The above transformation b — g maps runs (consecutive occurrences of the
same value) into sequences of 0’s preceded by a 1; in the binary case it coincides with Move To
Front data compression pre-processing transformation.

Theorem 13. If 7 € S,, has its Lehmer code t = tity...1t,, then its McMahon code is A(t),
that is, © = [[;_, [[4, 5] with s1sq...5, = A(t).

Proof. Firstly, note that for three integers n, k and v with 0 < k < u < n,
puk = [[u, k] - [u—1,u—1—E].

But [[v, p])-[[v, r]] = [[v, p+7]], with addition taken modulo v, and the statement holds by iterating
this relation for the Lehmer code of . O

As a consequence of this theorem we have the following corollary and the alternative defini-
tion: ¥ = (A o code)™!, see Figure 5.

Corollary 14. For any 7w € &,,, the McMahon code s = $183 ..., of m satisfies:
o s, =card{j|1 <j<i,m € [mmp]} if mi <mig,
o s;=card{j|1 <j<i,m & [miqy1,m]} elsewhere,

with the convention that m,41 =n + 1.



For example,
o A(012243) =010213, and so in G we have pg3 - P54+ a2 paz- g8 g
p2,1 - pro = [[6,3] - [[5,1]] - [[4,2] - [3,0] - [[2,1]] - [1,0]] = 652413, ) /
and code™ P
e A71(012243) =012023, and so in &g we have [[6, 3]]-[[5, 4] - [4, 2] S,

13,2] - [2,1]) - [[1,0]] = p6,3 - ps5,2 - pao - P32 - p2,1-p1,0=05b21643.
See again Figure 1.

For a subexcedent sequence t = tytots...t,_1t, € S, we define its
complement ¢¢ as the subexcedent sequence t1(1 —t2)(2 —t3)...(n —2 —1t,—1)(n — 1 —t,); and
for a permutation 7 = mmens ... T_17, € &, we define its complement as 7€ = (n + 1 —
m)n+1—-m)n+1—-m3)...(n+1—my_1)(n+1—m,). It is easy to see that for any ¢t € Sy,
code™1(t°) = (code™'(t))¢ and we will show that the complement operator commutes with A,
A~! and .

Lemma 15. For any t € S, we have
(1) A(t°) = (A(t))",
(i) A7) = (A7H(1))°,

(i) P(t°) = (P (t))°-
Proof. (i) Let s = s182...8, = A(t°) and s’ = sish...s), = (A(t))¢. Clearly, s, = s, =
(n—1) —t, and for i < n,

Figure 5: ¢ = code™! o
A=l = (Aocode)t.

si = (i—1—t;)—(i—t;y1) mod i
= tiy1 —t;—1 mod ¢,
and
si = i—1—(t; —tiy1) modi
= tit1—ti—1 mod sz,
and so s = s’
The proof of point (ii) is similar to that of point (i).
(iii) The statement results from the following equalities:
() = (code ' o ATH)(t°)
= code Y (AT(t))°
= (code ' (ATL(t)))°
(¥ (8)°

Corollary 16.
i D(¢(tc)) = {17 2,...,n— 1} \ D(w(t));
e M(code 1(t)) = D((code™t o A71)(2)).

Finally, we conclude with the following question: can the previous results be naturally general-
ized to multiset permutations?
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