
More restrictive Gray codes for necklaces and Lyndon wordsVincent VAJNOVSZKILE2I - UMR CNRS, Universit�e de BourgogneB.P. 47 870, 21078 DIJON-Cedex FranceOctober 4, 2007AbstractIn the last years, the order induced by the Binary Re
ected Gray Code or its general-izations shown an increasing interest. In this note we show that the BRGC order induces acyclic 2-Gray code on the set of binary necklaces and Lyndon words and a cyclic 3-Gray codeon the unordered counterparts. This is an improvement and a generalization to unlabeledwords of the result in [10, 13]; however an algorithmic implementation of our Gray codesremains an open problem.Keywords: necklaces, Lyndon words, Gray codes.1 IntroductionFor a word x = uv, the word vu is called a rotation of x. A necklace is a word which islexicographically minimal under the rotation; and a Lyndon word is an aperiodic necklace.An unlabeled necklace is a word which is lexicographically minimal under both rotation andpermutation of alphabet symbols; and an unlabeled Lyndon word is an aperiodic unlabelednecklace. Generation of necklaces and Lyndon words lexicographically have been widely studiedin the literature; see for instance [6, 7, 8, 10, 13] and the references therein. We restrict ourattention to binary words and we denote by Nn, Ln, UNn and ULn the set of binary length nnecklaces, Lyndon words, unlabeled necklaces and unlabeled Lyndon words, respectively. Thesefour sets are related by the inclusions: ULn � UNn\ \Ln � NnA k-Gray code for a set of words S is an ordered list for S such that the Hamming distancebetween any two consecutive words in the list is at most k. If the distance between the last andthe �rst words in the list is also bounded by k, then the Gray code is called cyclic; in additionif k is minimal, then we say that the Gray code is minimal.In [9, 12] 2-Gray codes for binary necklaces with �xed density (given number of ones) aregiven and in [10, 13] are presented 3-Gray codes and generating algorithms for binary and k-arynecklaces and Lyndon words with no density restriction. In [12] it is shown that, in general,there is no 1-Gray code for binary necklaces or Lyndon words. Here we give 2-Gray codes forlength n binary necklaces and Lyndon words and 3-Gray codes for their unlabeled counterparts.1



In the last years, the order induced by the Binary Re
ected Gray Code (BRGC) [5] or itsgeneralizations shown an increasing interest [1, 2, 4, 10, 13]. For example, in [4] the authorsuse the BRGC order twice: �rstly they de�ne Gray-necklaces as binary strings minimal (underrotation) in BRGC order instead of lexicographic order, then they list them in BRGC order;the obtained list is almost a Gray code for necklaces in a non-standard representation. Asin [10, 13], our approach here is based on the BRGC order but the obtained Gray codes forbinary necklaces and Lyndon words are 2-Gray codes (and so minimal) and can be extended tounlabeled necklaces and Lyndon words; however they seem less appropriate for an algorithmicimplementation.2 The main resultThe main result of this note is Theorem 1. We begin by recalling the de�nition of the BRGCorder [5] and giving three technical `facts' whose proof can be easily recovered by the reader.De�nition 1. Let a = a1a2 � � �an and b = b1b2 � � � bn be words in f0; 1gn and i the rightmostposition in which a and b di�er. We say that a is less than b in BRGC (denoted by a � b) ifPnj=i aj is even.Any set X � f0; 1gn of length n binary words listed in � order gives a su�x partitioned list,that is, all the words in X with a common su�x are contiguous in the list. An order relationwith this property is called genlex (as generalized lexicographical) order [11]. See Table 1 forthe sets N6, L6, UN6 and UL6 listed in � order.N6 L6 UN6 UL60 0 0 0 0 0 X0 0 0 0 1 1 X X X0 1 1 0 1 10 0 1 0 1 1 X X X0 0 1 1 1 1 X1 1 1 1 1 10 1 1 1 1 1 X0 1 0 1 1 1 X0 0 0 1 1 1 X X X0 0 0 1 0 1 X X X0 1 0 1 0 1 X0 0 1 1 0 1 X0 0 1 0 0 1 X0 0 0 0 0 1 X X XTable 1: The set of length 6 binary necklaces, Lyndon words, unlabeled necklaces and unlabeledLyndon words in BRGC order.Fact 1. Let � 2 f0; 1gn and j, 1 � j < n. If � satis�es the following three conditions: (i) 0j isa pre�x of � (ii) � has no other 0j factor, then � is a Lyndon word. If, in addition, � has no1j factors, then � is an unlabeled Lyndon word.2



For a binary word � 2 f0; 1gn let j�j1 denote the number of 1's in �.Fact 2. For � 2 f0; 1gn with j�j1 � 1 let �0 be the binary word obtained from � by changing itsleftmost 1 bit to 0.� If X 2 fNn; UNng and � 2 X with j�j1 � 1, then �0 2 X.� If X 2 fLn; ULng and � 2 X with j�j1 � 2, then �0 2 X.Fact 3. In � order� for n � 1 the �rst word in Nn and in UNn is 0n;� for n � 3 (resp. for n � 4) the �rst word in Ln (resp. in ULn) is 0n�212;� for n � 2 the last word in Nn, UNn, Ln and ULn is 0n�11.Lemma 1. Let X 2 fLn; Nn; ULn; UNng and � 2 X. Suppose that r is the rightmost positionwhere � di�ers from its successor ( resp. its predecessor) in � order, assuming that � is not thelast ( resp. �rst) word in X in this order. Then j�1�2 : : : �r�1j1 � 1.Proof. By contradiction. Let r be the rightmost position where � di�ers from �, its successor.If j�1�2 : : : �r�1j1 � 2, then by the de�nition of BRGC order and by Fact 2 one of the words �0or (�0)0 belongs to X and is larger than � and smaller than � in � order. The proof is similarwhen we consider the predecessor of �.The next corollary is a `weak' version of Theorem 1; its proof is very similar with the one ofTheorem 1 in [10] and we omit it.Corollary 1. � order induces a 3-Gray code on the sets Ln, Nn, ULn and UNn.Now we will prove that � induces a more restrictive Gray code. Let � be a binary wordwith j�j1 � 1 and let j be the leftmost position where �j = 1. If �j+1 = 0, then let de�ne ~� asthe binary word ~�i = �i, except ~�j = 0 and ~�j+1 = 1. � and ~� have the shape given by:� = 0 . . . 0 1 0 �j+2 . . . �n~� = 0 . . . 0 0 1 �j+2 . . . �n.If � 2 Nn, then ~� 2 Ln. This statement is formalized in the �rst point of the next lemma.This result is not true for unlabeled words. Indeed, 010101 2 UN6 but 001101 62 UN6 sincethe representative of 001101 is 001011 2 UN6. Similarly, 00101101 2 UL8 but 00011101 62 UL8since the representative of 00011101 is 00010111 2 UL8. The second point of the next lemmagives a more restrictive unlabeled counterpart of its �rst point.Lemma 2. Let X � f0; 1gn, � 2 X with j�j1 � 1, and let j be the leftmost position where�j = 1, and suppose that �j+1 = 0.1. If X 2 fLn; Nng, then ~� 2 Ln.2. If X 2 fULn; UNng and �j+2 = 0, then ~� 2 ULn.Proof. The length j � 1 pre�x of � is 0j�1 and � has no 0j factor. ~� has a unique 0j factorwhich is its length j pre�x, and so, by Fact 1, it is a Lyndon word and the �rst point holds.If X 2 fULn; UNng, then � has no 1j factor. In addition, if �j+2 = 0, then ~� has no 1jfactor too. Again, by Fact 1, ~� is an unlabeled Lyndon word, and the second point holds.3



Let X 2 fLn; Nn; ULn; UNng, � 2 X . If � di�ers from its successor in � order in at leasttwo positions, then the leftmost and the rightmost of these positions can not be arbitrarily far.This situation is formally stated in the next lemma and summarized in the table at the end ofits proof.Lemma 3. Let X � f0; 1gn and � 2 X. Suppose that � di�ers from its successor in � order inat least two positions (assuming that � is not the last word in X in this order). Let ` and r be,respectively, the leftmost and the rightmost of these positions.1. If �` 6= �r and X 2 fLn; Nn; ULn; UNng, then r = `+ 1.2. If �` = �r and X 2 fLn; Nng, then r = `+ 1.3. If �` = �r and X 2 fULn; UNng, then r = ` + 1 or r = ` + 2. In addition, if r = ` + 2,then �`+1 6= �`.Proof. The proof is by contradiction supposing that r � ` > 1 or r � ` > 2, respectively. Let �be the successor of � in � order.Proof of 1. Let suppose that r � ` > 1.When �` = 1 and �r = 0, then �` = 0 and �r = 1, and by Lemma 1, �i = 0 for all i, 1 � i < `and ` < i < r. Since �` = 1 and �`+1 = �`+2 = 0, applying Lemma 2 we have that the word ~�is in X . Moreover, it is easy to check that � � ~� � �, which is in contradiction with � beingthe successor of � in � order.Similarly, if �` = 0 and �r = 1, then �` = 1 and �r = 0. In this case, again by Lemma 1, �i = 0for all i, 1 � i < ` and ` < i < r. Since �` = 1 and �`+1 = �`+2 = 0, applying Lemma 2 itresults that ~� is in X and � � ~� � �.Proof of 2. Let suppose that r � ` > 1.When �` = �r = 1, then �` = �r = 0, and �i = 0 for all i, 1 � i < ` and ` < i < r. Since �` = 1and �`+1 = 0, by the �rst point of Lemma 2, ~� is in X and � � ~� � �.When �` = �r = 0, then �` = �r = 1, �`+1 = 0 and similarly ~� is in X with � � ~� � �.The proof of 3 is analogous to the one of point 2 by considering r � ` > 2. In addition, ifr � ` = 2, then �`+1 6= �` and �`+1 6= �`.Ln, Nn, ULn, UNn Ln, Nn ULn, UNn�` 6= �r �` = �r �` = �r+ + +r = `+ 1 r = `+ 1 r � `+ 2Recall that a Gray code is a k-Gray code if successive words di�er in at most k positions;and cyclic if the last and the �rst words di�er in the same way. As a consequence of the previouslemma, together with Fact 3, we can state the main result of this note.Theorem 1.1. BRGC order induces a cyclic 2-Gray code on Nn and Ln.2. BRGC order induces a cyclic 3-Gray code on UNn and ULn.Moreover, if two successive words, in BRGC order, in Nn, Ln, UNn or ULn di�er in morethan one position, then these positions are consecutive.4



3 Final remarksThe BRGC order � induces a cyclic 2-Gray code on Nn and Ln, and, as mentioned in Intro-duction, it is minimal. For example, in the Gray code list for N6 in Table 1 there are four2-changes between successive words. We do not know if our Gray codes for Nn and Ln minimizethe number of 2-changes between successive words.Also, our Gray code for UNn and ULn are 3-Gray codes, and in the list for UN6 in Table 1there is one 3-changes, namely between the 6th and the 7th word. A more restrictive (with no3-changes) list for UN6 is (000000; 000001; 010101; 000111; 000101; 001001; 001011; 000011); thisshows that our Gray codes for UNn and ULn might be not minimal.The main di�erence between the Gray codes presented here and the ones in [10] is that thelatter ones are pre�x partitioned lists. The algorithmic implementation of the su�x partitionedGray codes presented in this paper seems more di�cult. Indeed, the recursive de�nitions forNn and Ln [3, Theorem 2] (on which is based the algorithm in [10]), and for UNn and ULn [3,Theorem 5] work only for pre�x partitioned lists. This last remark suggestsQuestion 1 Can the Gray codes presented here be e�ciently implemented? That is, can Nn,Ln, UNn and ULn be e�ciently listed in BRGC order (de�ned in De�nition 1)?A natural generalization of the BRGC order to a k-ary alphabet is given by (see [13])De�nition Let k; n > 0 and a = a1a2 � � �an and b = b1b2 � � � bn be words in f0; 1; : : : ; k � 1gnand i the rightmost position in which a and b di�er. We say that a is less than b in re
ectedGray code order (denoted by a � b) if either� ai < bi and Pnj=i+1 aj =Pnj=i+1 bj is even, or� ai > bi and Pnj=i+1 aj =Pnj=i+1 bj is odd.Question 2 Can the previous results be extended to k-ary alphabet? Experimental results showthat the successor, in � order, of the 3-ary length 6 Lyndon word 001002 is 012102, and thesuccessor of 012202 is 022212; and those are the only consecutive (in � order) 3-ary length 6Lyndon words which do not di�er in at most two consecutive positions.AcknowledgmentThe author would like to thank one of the anonymous referees for helpful suggestions which haveimproved the accuracy of this paper.References[1] J.L. Baril, V. Vajnovszki. Minimal change list for Lucas strings and some graph theo-retic consequences, Theoretical Computer Science, 346 (2-3), 189-199, 2005.[2] M.W. Bunder, K.P. Tognetti, G.E. Wheeler. On binary re
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