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Abstract

In the last years, the order induced by the Binary Reflected Gray Code or its general-
izations shown an increasing interest. In this note we show that the BRGC order induces a
cyclic 2-Gray code on the set of binary necklaces and Lyndon words and a cyclic 3-Gray code
on the unordered counterparts. This is an improvement and a generalization to unlabeled
words of the result in [10, 13]; however an algorithmic implementation of our Gray codes
remains an open problem.
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1 Introduction

For a word # = wv, the word vu is called a rotation of x. A necklace is a word which is
lexicographically minimal under the rotation; and a Lyndon word is an aperiodic necklace.
An unlabeled necklace is a word which is lexicographically minimal under both rotation and
permutation of alphabet symbols; and an wunlabeled Lyndon word is an aperiodic unlabeled
necklace. Generation of necklaces and Lyndon words lexicographically have been widely studied
in the literature; see for instance [6, 7, 8, 10, 13] and the references therein. We restrict our
attention to binary words and we denote by N,,, L,,, UN, and UL, the set of binary length n
necklaces, Lyndon words, unlabeled necklaces and unlabeled Lyndon words, respectively. These
four sets are related by the inclusions:

UL, CUN,
N N
L, C N,

A k-Gray code for a set of words S is an ordered list for S such that the Hamming distance
between any two consecutive words in the list is at most k. If the distance between the last and
the first words in the list is also bounded by k, then the Gray code is called cyclic; in addition
if k£ is minimal, then we say that the Gray code is minimal.

In [9, 12] 2-Gray codes for binary necklaces with fixed density (given number of ones) are
given and in [10, 13] are presented 3-Gray codes and generating algorithms for binary and k-ary
necklaces and Lyndon words with no density restriction. In [12] it is shown that, in general,
there is no 1-Gray code for binary necklaces or Lyndon words. Here we give 2-Gray codes for
length n binary necklaces and Lyndon words and 3-Gray codes for their unlabeled counterparts.



In the last years, the order induced by the Binary Reflected Gray Code (BRGC) [5] or its
generalizations shown an increasing interest [1, 2, 4, 10, 13]. For example, in [4] the authors
use the BRGC order twice: firstly they define Gray-necklaces as binary strings minimal (under
rotation) in BRGC order instead of lexicographic order, then they list them in BRGC order;
the obtained list is almost a Gray code for necklaces in a non-standard representation. As
in [10, 13], our approach here is based on the BRGC order but the obtained Gray codes for
binary necklaces and Lyndon words are 2-Gray codes (and so minimal) and can be extended to
unlabeled necklaces and Lyndon words; however they seem less appropriate for an algorithmic
implementation.

2 The main result

The main result of this note is Theorem 1. We begin by recalling the definition of the BRGC
order [5] and giving three technical ‘facts’ whose proof can be easily recovered by the reader.

Definition 1. Let a = ayay---a, and b = biby---b, be words in {0,1}" and i the rightmost
position in which a and b differ. We say that a is less than b in BRGC (denoted by a < b) if

n :
D oiiaj s even.

Any set X C {0, 1}" of length n binary words listed in < order gives a suffiz partitioned list,
that is, all the words in X with a common suffix are contiguous in the list. An order relation
with this property is called genlex (as generalized lexicographical) order [11]. See Table 1 for
the sets Ng, Lg, UNg and U Lg listed in < order.

| Ne | L¢|UNg|ULg |
000000 v
000011 | v ][ v |V
011011

001011 |V [ v |V
001111V

111111

011111V
010111V

000111 | v ][ v | V
000101 | v [ v | V
010101 v
001101 ] v

001001 v
000001 v ][ v |V

Table 1: The set of length 6 binary necklaces, Lyndon words, unlabeled necklaces and unlabeled
Lyndon words in BRGC order.

Fact 1. Let o € {0,1}" and 7, 1 < j < n. If a satisfies the following three conditions: (i) 07 is
a prefiz of a (ii) a has no other 07 factor, then a is a Lyndon word. If, in addition, o has no
17 factors, then « is an unlabeled Lyndon word.



For a binary word v € {0,1}" let |a|; denote the number of 1’s in a.

Fact 2. For A € {0,1}" with |A|y > 1 let X' be the binary word obtained from X\ by changing its
leftmost 1 bit to 0.

o If X € {N,,UN,} and X\ € X with |A|; > 1, then X € X.
o If X €{L,,UL,} and A € X with |A|y > 2, then N € X.

Fact 3. In < order
e forn > 1 the first word in N,, and in UN, is 0";
o forn >3 (resp. for n > 4) the first word in L, (resp. in UL, ) is 0""%1%;

e for n > 2 the last word in N,, UN,, L, and UL,, is 0"~ '1.

Lemma 1. Let X € {L,,N,,UL,,UN,} and X\ € X. Suppose that r is the rightmost position
where X differs from its successor (resp. its predecessor) in < order, assuming that \ is not the
last (resp. first) word in X in this order. Then |AAz... A\ —1]1 < 1.

Proof. By contradiction. Let r be the rightmost position where A differs from pu, its successor.
If |[AtA2...A_1]1 > 2, then by the definition of BRGC order and by Fact 2 one of the words A’
or (X)" belongs to X and is larger than A and smaller than g in < order. The proof is similar
when we consider the predecessor of A. O

The next corollary is a ‘weak’ version of Theorem 1; its proof is very similar with the one of
Theorem 1 in [10] and we omit it.

Corollary 1. < order induces a 3-Gray code on the sets L,,, N,, UL, and UN,,.

Now we will prove that < induces a more restrictive Gray code. Let o be a binary word
with |a]; > 1 and let j be the leftmost position where a; = 1. If a;44 = 0, then let define & as
the binary word &; = «;, except &; = 0 and &;4; = 1. « and & have the shape given by:

a=0...010aj40... a,

a=0...001 a4 ... ap.
If & € N, then & € L,. This statement is formalized in the first point of the next lemma.
This result is not true for unlabeled words. Indeed, 010101 € UNg but 001101 ¢ U Ng since
the representative of 001101 is 001011 € U Ng. Similarly, 00101101 € U Lg but 00011101 € ULg
since the representative of 00011101 is 00010111 € ULs. The second point of the next lemma
gives a more restrictive unlabeled counterpart of its first point.

Lemma 2. Let X C {0,1}", a € X with |a|; > 1, and let j be the leftmost position where
a; =1, and suppose that a1 = 0.

1. If X € {L,,N,}, then & € L,,.
2. If X e {UL,,UN,} and a;43 =0, then & € UL,,.

Proof. The length j — 1 prefix of ais 0~! and « has no 07 factor. & has a unique 07 factor
which is its length j prefix, and so, by Fact 1, it is a Lyndon word and the first point holds.

If X € {UL,,UN,}, then a has no 17 factor. In addition, if a9 = 0, then & has no 1
factor too. Again, by Fact 1, & is an unlabeled Lyndon word, and the second point holds. [



Let X € {L,,N,,UL,,UN,}, A € X. If X differs from its successor in < order in at least
two positions, then the leftmost and the rightmost of these positions can not be arbitrarily far.
This situation is formally stated in the next lemma and summarized in the table at the end of
its proof.

Lemma 3. Let X C {0,1}" and X\ € X. Suppose that X differs from its successor in < order in
at least two positions (assuming that A is not the last word in X in this order). Let { and r be,
respectively, the leftmost and the rightmost of these positions.

1. If i # A and X € {L,,,N,,UL,,UN,}, thenr={(+ 1.
2. If g =X and X € {L,,N,}, thenr =(+1.

3. Ifdp=X and X € {UL,,,UN,}, thenr =(+1 or r = (4 2. In addition, if r = {4 2,
then Apiq 75 Ar.

Proof. The proof is by contradiction supposing that r — £ > 1 or r — £ > 2, respectively. Let u
be the successor of A in < order.

Proof of 1. Let suppose that r — ¢ > 1.

When Ay =1 and A. =0, then gy = 0 and pu,. = 1, and by Lemma 1, A; = 0 for all ¢, 1 <2< ¢
and £ < ¢ < r. Since Ay =1 and Agy1 = Appg = 0, applying Lemma 2 we have that the word A
is in X. Moreover, it is easy to check that A < A < p, which is in contradiction with p being
the successor of A in < order.

Similarly, if Ay =0 and A, = 1, then gy = 1 and g, = 0. In this case, again by Lemma 1, p; =0
forall o, 1 <¢ < fand € < ¢ < r. Since gy = 1 and pgy; = piego = 0, applying Lemma 2 it
results that i isin X and A < g < p.

Proof of 2. Let suppose that r — ¢ > 1.

When Ay = A, =1, then gy = p, =0, and A; =0forall ¢, 1 <i< fand £ < ¢ < r. Since Ay =1
and Agp1 = 0, by the first point of Lemma 2, Aisin X and A < X < L

When Ay = A, =0, then uy = p, = 1, pp41 = 0 and similarly f is in X with A < g < p.

The proof of 3 is analogous to the one of point 2 by considering » — ¢ > 2. In addition, if
r—{=2,then Apyq1 # Ay and piyp1 # -

L, N, UL, UN, | L, N, UL, UN,
Ao £ Ay Ao = A, Ao = A,
I3 I3 I3
r=/04+1 r=~0+1| r<{+2

O

Recall that a Gray code is a k-Gray code if successive words differ in at most k positions;
and cyclic if the last and the first words differ in the same way. As a consequence of the previous
lemma, together with Fact 3, we can state the main result of this note.

Theorem 1.

1. BRGC order induces a cyclic 2-Gray code on N, and L.
2. BRGC order induces a cyclic 3-Gray code on UN,, and UL,,.

Moreover, if two successive words, in BRGC order, in N, L,, UN, or UL, differ in more
than one position, then these positions are consecutive.



3 Final remarks

The BRGC order < induces a cyclic 2-Gray code on N,, and L,, and, as mentioned in Intro-
duction, it is minimal. For example, in the Gray code list for Ng in Table 1 there are four
2-changes between successive words. We do not know if our Gray codes for V,, and L, minimize
the number of 2-changes between successive words.

Also, our Gray code for UN,, and UL,, are 3-Gray codes, and in the list for U Ng in Table 1
there is one 3-changes, namely between the 6th and the 7th word. A more restrictive (with no
3-changes) list for U Ng is (000000, 000001,010101,000111,000101,001001,001011,000011); this
shows that our Gray codes for UN,, and UL, might be not minimal.

The main difference between the Gray codes presented here and the ones in [10] is that the
latter ones are prefix partitioned lists. The algorithmic implementation of the suffix partitioned
Gray codes presented in this paper seems more difficult. Indeed, the recursive definitions for
N,, and L, [3, Theorem 2] (on which is based the algorithm in [10]), and for UN,, and UL, [3,
Theorem 5] work only for prefix partitioned lists. This last remark suggests

Question 1 Can the Gray codes presented here be efficiently implemented? That is, can N,
L., UN, and UL, be efficiently listed in BRGC order (defined in Definition 1)7

A natural generalization of the BRGC order to a k-ary alphabet is given by (see [13])

Definition Let k,n > 0 and a = ajay---a, and b = byby---b, be words in {0,1,...,k — 1}
and ¢ the rightmost position in which e and b differ. We say that « is less than b in reflected
Gray code order (denoted by a < b) if either

n _ n -
e a; <bjand } 7 .. a; =37, b;is even, or

e a;>byand 377 . a; =370, b;is odd.

Question 2 Can the previous results be extended to k-ary alphabet? Experimental results show
that the successor, in < order, of the 3-ary length 6 Lyndon word 001002 is 012102, and the
successor of 012202 is 022212; and those are the only consecutive (in < order) 3-ary length 6
Lyndon words which do not differ in at most two consecutive positions.
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