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@ Some definitions:
e set partitions, restricted (bounded) growth functions
e Gray codes
@ generating algorithms
e order relations
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o Gray codes
@ generating algorithms
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Set partitions

A set partition of [n] = {1,2,..., n} is a collection

DOvD17-"7DK—1

of disjoint subsets (blocks) of [n] whose union is [n]
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Set partitions

A set partition of [n] = {1,2,..., n} is a collection

DOvD17-"7DK—1

of disjoint subsets (blocks) of [n] whose union is [n]
A partition of [n] is in standard form if

min Dg < minDy < --- < min Dy_
and in this case the partition is denoted

Do/D1/ -+ /D
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The number of partitions of a set of cardinality n is By, the nth
Bell number
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The number of partitions of a set of cardinality n is By, the nth
Bell number

The number of partitions of a set of cardinality n, into k

nonempty subset is S, x, the Stirling numbers of the second
kind:

n
B, = Z Sn,k
k=1
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Restrictive growth functions

A restricted growth function of length nis an integer sequence
S = S§1S>--- Sp such that

s; =0, and
0 <sj 1 <max{sy,...,sji}+1,forall1 <i<n-1
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There is a bijection between the set of restricted growth
functions of length n and the set of partitions of [n],
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There is a bijection between the set of restricted growth
functions of length n and the set of partitions of [n], namely:

°
S1Sp-++Sn+> Do/Dy/ - /Dy

if and only if s; = i implies j € D;
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There is a bijection between the set of restricted growth
functions of length n and the set of partitions of [n], namely:

°
S1Sp-++Sn+> Do/Dy/ - /Dy
if and only if s; = i implies j € D;; or, conversely,
°
Do/Dy/ -+ /Dk_1+> 81S2---8p

if and only if j € D; implies s; = i.
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Example
{{2,5},{6},{4,7},{1,3,8}} is apartition of {1,2,...,8}
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Example
{{2,5},{6},{4,7},{1,3,8}} is apartition of {1,2,...,8}
{{1,8,8},{2,5},{4,7},{6}} its standard form
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Example
{{2,5},{6},{4,7},{1,3,8}} is apartition of {1,2,...,8}
{{1,8,8},{2,5},{4,7},{6}} its standard form
1,3,8/2,5/4,7/6
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Example

{{2,5},{6},{4,7},{1,3,8}} is apartition of {1,2,...,8}
{{1,8,8},{2,5},{4,7},{6}} its standard form

1,3,8/2,5/4,7/6
1,3,8/2,5/4,7/ 6

M~ Y
DO D1 Dg D3
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Example

{{2,5},{6},{4,7},{1,3,8}} is apartition of {1,2,...,8}
{{1,8,8},{2,5},{4,7},{6}} its standard form
1,3,8/2,5/4,7/6
1,3,8/2,5/4,7/_ 6
M~ Y

DO D1 Dg D3
01021320 its restricted growth function
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Example
{{2,5},{6},{4,7},{1,3,8}} is apartition of {1,2,...,8}
{{1,8,8},{2,5},{4,7},{6}} its standard form
1,3,8/2,5/4,7/6
1,3,8/2,5/4,7/_ 6
M~ Y
DO D1 Dg D3
01021320 its restricted growth function

R, denotes the set of restricted growth functions of length n

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations



Bounded restricted growth functions

For an integer b > 0, s = 51S5.... Sy is a b-bounded restricted
growth function if

si<bforalll <i<n
Rn(b) denotes the set of b-bounded sequences in R
Rn(b) = {s1S2...5n € Ry : max{s;}/_; < b}.
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Bounded restricted growth functions

For an integer b > 0, s = 51S5.... Sy is a b-bounded restricted
growth function if

si<bforalll <i<n
Rn(b) denotes the set of b-bounded sequences in R
Rn(b) = {s1S2...5n € Ry : max{s;}/_; < b}.

Rn(b) is in bijection with the partitions of the set [n], into at most
b + 1 nonempty subset and

b
card Rn(b) = )  Snk
k=1
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Bounded restricted growth functions

For an integer b > 0, s = 51S5.... Sy is a b-bounded restricted
growth function if

si<bforalll <i<n
Rn(b) denotes the set of b-bounded sequences in R
Rn(b) = {s1S2...5n € Ry : max{s;}/_; < b}.

Rn(b) is in bijection with the partitions of the set [n], into at most
b + 1 nonempty subset and

b
card Rn(b) = )  Snk
k=1

Pn(b) = {s1S2...5n € Ry : max{s;}/_, = b}.
and

card Pp(b) = Sp p+1
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The set R5(2)

Ahmad Sabri, Vincent Vajnovszki

00000
00001
00010
00011
00012
00100
00101
00102
00110
00111
00112
00122
00121
00120

01000
01001
01002
01010
01011
01012
01022
01021
01020
01100
01101
01102
01110
01111

01112
01122
01121
01120
01220
01221
01222
01212
01211
01210
01202
01201
01200
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A Gray code for a combinatorial class is a listing of its objects in
which only “small change”takes place between any two
consecutive objects

A d-Gray code is a Gray code such that the Hamming distance
between any two consecutive objects is at most d.
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A Gray code for a combinatorial class is a listing of its objects in
which only “small change”takes place between any two
consecutive objects

A d-Gray code is a Gray code such that the Hamming distance
between any two consecutive objects is at most d.
Known Gray codes for

@ permutations: Steinhaus-Johnson-Trotter (1962-1964)
@ involutions: Walsh (2001)

@ derangements: Baril-Vajnovszki (2004)
@ efc.
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Generating algorithms

We we present Gray codes and constant amortized time (CAT)
algorithm for generating these Gray codes for

@ Ru(b)
@ Py(b), bodd
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Generating algorithms

We we present Gray codes and constant amortized time (CAT)
algorithm for generating these Gray codes for

@ Ay(b)
@ Py(b), b odd
Some previous works for generating R, in Gray code:
@ Knuth (1975)
@ Ruskey (improvement of Knuth’s algorithm)
@ Ruskey and Savage: a loop-free implementation (1984)
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Order relations

The lexicographic orderon {0,1,...,m— 1}"is defined as:

S1S2...5p < tib...ly,

Si < Iy
where k is the leftmost position where s and t differ.
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Order relations

The lexicographic orderon {0,1,...,m— 1}"is defined as:

S1S2...5p < tib...ly,

Si < Iy
where k is the leftmost position where s and t differ.

The Reflected Gray Code orderon {0,1,...,m— 1}"is defined
as:

S$1S2...5p < ... Iy,
if either
o YK 1 sjis even and si < fx, or

e Y5 is odd and s > t,
where k is the leftmost position where s and t differ.
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The co-Reflected Gray Code orderon {0,1,....m—1}"is
defined as:

3132...Sn<]t1t2...tn,

if either
@ uy is even and s, < tx, or
@ Uy is odd and s, > tk,
where k is the leftmost position where s and t differ, and
k—1
ux =Y _[si# 0and s; is even],

i=1

and [-] is the Iverson bracket.
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The co-Reflected Gray Code orderon {0,1,....m—1}"is
defined as:

3132...Sn<]t1t2...tn,

if either
@ uy is even and s, < tx, or
@ Uy is odd and s, > tk,
where k is the leftmost position where s and t differ, and
k—1
ux =Y _[si# 0and s; is even],

i=1

and [-] is the Iverson bracket.
ux = the number of non-zero even symbols in 1S, ... Sk_1
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Example: The set {0, 1,2} listed in < order

000|{100]220
001101221
002|102 |222

010110212
o111 111211
012112210
022122202

021(1121|201
020(120]200
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The main resulis

For any n,b > 1 and b odd, Rn(b) listed in < order is a 3-Gray
code.
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Let
@ b> 2 and odd
@ a=aa...ag, k<n
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Proposition
Let
@ b> 2 and odd
@ a=aa...ag, k<n

If s is the <-last (resp. the <-first) sequence in R,(b) with the
prefix a, then s has one of these forms:
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Proposition
Let
@ b> 2 and odd
@ a=aa...ag, k<n

If s is the <-last (resp. the <-first) sequence in R,(b) with the
prefix a, then s has one of these forms:

@ s=aMo...0if Zf‘:‘ﬂ S; is even (resp. odd) and M is odd;
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Proposition
Let
@ b> 2 and odd
@ a=aa...ag, k<n

If s is the <-last (resp. the <-first) sequence in R,(b) with the
prefix a, then s has one of these forms:

@ s=aMo0...0 /fz, 1 Si Is even (resp. odd) and M is odd;

@ s=aM(M+1)0...0 /fz, 1 Si is even (resp. odd) and M
is even;
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Proposition
Let
@ b> 2 and odd
@ a=aa...ag, k<n

If s is the <-last (resp. the <-first) sequence in R,(b) with the
prefix a, then s has one of these forms:

@ s=aMo0...0 /fz, 1 Si Is even (resp. odd) and M is odd;

@ s=aM(M+1)0...0 /fz, 1 Si is even (resp. odd) and M
is even;

@s=a0...0 /fz, 1 Si is odd (resp. even),
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Proposition
Let
@ b> 2 and odd
@ a=aa...ag, k<n

If s is the <-last (resp. the <-first) sequence in R,(b) with the
prefix a, then s has one of these forms:

@ s=aMo0...0 /fz, 1 Si Is even (resp. odd) and M is odd;

@ s=aM(M+1)0...0 /fz, 1 Si is even (resp. odd) and M
is even;
@s=a0...0 /fz, 1 Si is odd (resp. even),
where M = min{b, max{s;}%_, + 1}.
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Forany n>1, b > 2 and even, Ry(b) listed in < order is a
3-Gray code.
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Let
@ b> 2 and even
@ a=aja...a, k<n
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Proposition
Let
@ b>2andeven
@ a=aja...a, k<n

If s is the <-last (resp. the <-first) sequence in Ry(b), with the
prefix a, then s has one of these forms:
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Proposition
Let
@ b>2andeven
@ a=aja...a, k<n

If s is the <-last (resp. the <-first) sequence in Ry(b), with the
prefix a, then s has one of these forms:

@ s=aMo0...0 if ug is even (resp. odd) and M is even;
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Proposition
Let
@ b>2andeven
@ a=aja...a, k<n

If s is the <-last (resp. the <-first) sequence in Ry(b), with the
prefix a, then s has one of these forms:

@ s=aMo0...0 if ug is even (resp. odd) and M is even;
@ s=aM(M+1)0...0 ifug is even (resp. odd) and M is odd;
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Proposition
Let
@ b>2andeven
@ a=aja...a, k<n

If s is the <-last (resp. the <-first) sequence in Ry(b), with the
prefix a, then s has one of these forms:

@ s=aMo0...0 if ug is even (resp. odd) and M is even;
@ s=aM(M+1)0...0 ifug is even (resp. odd) and M is odd;
@ s=a0...0 ifug is odd (resp. even),
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Proposition
Let
@ b>2andeven
@ a=aja...a, k<n

If s is the <-last (resp. the <-first) sequence in Ry(b), with the
prefix a, then s has one of these forms:

@ s=aMo0...0 if ug is even (resp. odd) and M is even;
@ s=aM(M+1)0...0 ifug is even (resp. odd) and M is odd;
@ s=a0...0 ifux is odd (resp. even),
where
M = min{b, max{s;}¥_, + 1}
ug = Sk [si # 0 and s; is even],
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For any n > 1, R, listed in both < and < order are 3-Gray codes.
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Forany n,b > 1, b odd, Pn(b) listed in < order is a 5-Gray
code.
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Generating algorithmes

procedure GEN1(k, dir, M: integer)

global s, n, bound: integer;

local /, u: integer;

if M = bound then M := bound — 1;

if Kk = n+1then TYPE();

else if dir is even then

fori:=0to M +1
Sk :=1;
if M < s, then u := si; else u:= M,
GEN1(k +1,i,u);
else for i .= M + 1 downto 0

Sk =1
if M < s, then u := si; else u:= M,
GEN1(k+1,i+1,u);

Generating algorithm for R,(b), b > 1 and odd, in RGC order
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procedure GEN2(k, dir, M: integer)

global s, n, bound: integer;

local i, u: integer;

if M+ 1 > bound then M := bound — 1;

if Kk = n+ 1 then TYPE();

else if dir is even then

fori:=0to M+ 1
Sk =1
if M < s, then u := si; else u:= M,
if s = 0 then GEN2(k + 1,0, u);
else GEN2(k +1,i+ 1, u);
else for i := M+ 1 downto 0

bk =1
if M < s, then u := si; else u:= M;
if s, =0then GEN2(k +1,1,u);
else GEN2(k + 1,1/, u);

Generating algorithm for R,(b), b > 2 and even, in co-RGC

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations



procedure GEN3(k, dir, M, flag: integer)
if Kk = n+ 1 then TYPE();
else if bound — M = n— k + 1 and flag = 0 then
Assign unique values for sy ... Sp;
TYPE();
else if M = bound then M := M — 1;flag := 1;
if dir is even then
fori:=0to M +1
Sk = I;
if M < s, then u := si; else u:= M,
GEN3(k + 1,1, u, flag);
else for i = M + 1 downto 0
Sk :=1;
if M < s, then u := si; else u:= M,
GEN3(k+1,i+1,u, flag);

Generating algorithm for P,(b), b > 1 and odd, with respect to
RGC order
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Example

The set R5(2) isted in < is

00000
00001
00010
00011
00012
00100
00101
00102
00110
00111
00112
00122
00121
00120

01000
01001
01002
01010
01011
01012
01022
01021
01020
01100
01101
01102
01110
01111

01112
01122
01121
01120
01220
01221
01222
01212
01211
01210
01202
01201
01200
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Thank you !

HUMES
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