More restricted growth functions: Gray codes and exhaustive generations

Ahmad Sabri¹ Vincent Vajnovszki²

¹Gunadarma University, Jakarta, Indonesia

²Le2i Université de Bourgogne – Franche Comté, Dijon, France

JCCA 2016, Kyoto, May 21-25

・ 同 ト ・ 三 ト ・ 三 ト

Outline

- Some definitions:
 - set partitions, restricted (bounded) growth functions
 - Gray codes
 - generating algorithms
 - order relations
- Main results:
 - Gray codes
 - generating algorithms

for bounded growth functions

イロト イポト イヨト イヨト 三日

Outline

- Some definitions:
 - set partitions, restricted (bounded) growth functions
 - Gray codes
 - generating algorithms
 - order relations
- Main results:
 - Gray codes
 - generating algorithms

for bounded growth functions

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

A set partition of $[n] = \{1, 2, ..., n\}$ is a collection

 $D_0, D_1, \ldots, D_{k-1}$

of disjoint subsets (blocks) of [*n*] whose union is [*n*] A partition of [*n*] is in *standard form* if

 $\min D_0 < \min D_1 < \cdots < \min D_{k-1}$

and in this case the partition is denoted

 $D_0/D_1/\cdots/D_{k-1}$

イロト イポト イヨト イヨト 三日

A set partition of $[n] = \{1, 2, ..., n\}$ is a collection

 $D_0, D_1, \ldots, D_{k-1}$

of disjoint subsets (blocks) of [*n*] whose union is [*n*] A partition of [*n*] is in *standard form* if

 $\min D_0 < \min D_1 < \cdots < \min D_{k-1}$

and in this case the partition is denoted

 $D_0/D_1/\cdots/D_{k-1}$

The number of partitions of a set of cardinality n is B_n , the nth Bell number

The number of partitions of a set of cardinality *n*, into *k* nonempty subset is $S_{n,k}$, the *Stirling numbers of the second kind*:

$$B_n = \sum_{k=1}^n S_{n,k}$$

★週 → ★ 注 → ★ 注 → 一 注

The number of partitions of a set of cardinality n is B_n , the nth Bell number

The number of partitions of a set of cardinality *n*, into *k* nonempty subset is $S_{n,k}$, the *Stirling numbers of the second kind*:

$$B_n = \sum_{k=1}^n S_{n,k}$$

< 回 > < 回 > < 回 > … 回

- A *restricted growth function* of length *n* is an integer sequence $s = s_1 s_2 \cdots s_n$ such that
 - $s_1 = 0$, and $0 \le s_{i+1} \le \max\{s_1, \dots, s_i\} + 1$, for all $1 \le i \le n-1$

▲□ → ▲ 三 → ▲ 三 → りへ(~

There is a bijection between the set of restricted growth functions of length n and the set of partitions of [n], namely:

 $s_1 s_2 \cdots s_n \mapsto D_0/D_1/\cdots/D_{k-1}$ if and only if $s_j = i$ implies $j \in D_i$; or, conversely, $D_0/D_1/\cdots/D_{k-1} \mapsto s_1 s_2 \cdots s_n$

if and only if $j \in D_i$ implies $s_j = i$.

ヘロト ヘアト ヘビト ヘビト

There is a bijection between the set of restricted growth functions of length n and the set of partitions of [n], namely:

 $s_1 s_2 \cdots s_n \mapsto D_0/D_1/\cdots/D_{k-1}$ if and only if $s_j = i$ implies $j \in D_i$; or, conversely, $D_0/D_1/\cdots/D_{k-1} \mapsto s_1 s_2 \cdots s_n$ if and only if $i \in D_i$ implies $s_i = i$.

۲

イロト イポト イヨト イヨト 三日

There is a bijection between the set of restricted growth functions of length n and the set of partitions of [n], namely:

$$s_1 s_2 \cdots s_n \mapsto D_0/D_1/\cdots/D_{k-1}$$

if and only if $s_j = i$ implies $j \in D_i$; or, conversely,
 $D_0/D_1/\cdots/D_{k-1} \mapsto s_1 s_2 \cdots s_n$

if and only if $j \in D_i$ implies $s_j = i$.

۲

< 回 > < 回 > < 回 > … 回

{{2,5}, {6}, {4,7}, {1,3,8}} is apartition of {1,2,...,8} {{1,3,8}, {2,5}, {4,7}, {6}} its standard form 1,3,8/2,5/4,7/6 $\underbrace{1,3,8}_{D_0} \underbrace{2,5}_{D_1} \underbrace{4,7}_{D_2} \underbrace{6}_{D_3}$ 01021320 its restricted growth function

R_n denotes the set of restricted growth functions of length n

{{2,5}, {6}, {4,7}, {1,3,8}} is apartition of {1,2,...,8} {{1,3,8}, {2,5}, {4,7}, {6}} its standard form 1,3,8/2,5/4,7/6 1,3,8/2,5/4,7/6 1,3,8/2,5/4,7/6 01021320 its restricted growth function

R_n denotes the set of restricted growth functions of length n

{{2,5}, {6}, {4,7}, {1,3,8}} is apartition of {1,2,...,8} {{1,3,8}, {2,5}, {4,7}, {6}} its standard form 1,3,8/2,5/4,7/6 1,3,8/2,5/4,7/61,3,8/2,5/4,7/6

01021320 its restricted growth function

R_n denotes the set of restricted growth functions of length n

{{2,5}, {6}, {4,7}, {1,3,8}} is apartition of {1,2,...,8} {{1,3,8}, {2,5}, {4,7}, {6}} its standard form 1,3,8/2,5/4,7/6 $\underbrace{1,3,8}_{D_0} / \underbrace{2,5}_{D_1} / \underbrace{4,7}_{D_2} / \underbrace{6}_{D_3}$

R_n denotes the set of restricted growth functions of length n

 $\{\{2,5\},\{6\},\{4,7\},\{1,3,8\}\} \text{ is apartition of } \{1,2,\ldots,8\} \\ \{\{1,3,8\},\{2,5\},\{4,7\},\{6\}\} \text{ its standard form} \\ 1,3,8/2,5/4,7/6 \\ \underbrace{1,3,8}_{D_0}/\underbrace{2,5}_{D_1}/\underbrace{4,7}_{D_2}/\underbrace{6}_{D_3} \\ 0\,1\,0\,2\,1\,3\,2\,0 \text{ its restricted growth function}$

R_n denotes the set of restricted growth functions of length n

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $\{\{2,5\},\{6\},\{4,7\},\{1,3,8\}\} \text{ is apartition of } \{1,2,\ldots,8\} \\ \{\{1,3,8\},\{2,5\},\{4,7\},\{6\}\} \text{ its standard form} \\ 1,3,8/2,5/4,7/6 \\ \underbrace{1,3,8}_{D_0}/\underbrace{2,5}_{D_1}/\underbrace{4,7}_{D_2}/\underbrace{6}_{D_3} \\ 0\,1\,0\,2\,1\,3\,2\,0 \text{ its restricted growth function}$

 R_n denotes the set of restricted growth functions of length n

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Bounded restricted growth functions

For an integer b > 0, $s = s_1 s_2 \dots s_n$ is a *b*-bounded restricted growth function if

 $s_i \leq b$ for all $1 \leq i \leq n$

 $R_n(b)$ denotes the set of *b*-bounded sequences in R_n

$$R_n(b) = \{s_1 s_2 \dots s_n \in R_n : \max\{s_i\}_{i=1}^n \le b\}.$$

 $R_n(b)$ is in bijection with the partitions of the set [n], into at most b + 1 nonempty subset and

$$\operatorname{card} R_n(b) = \sum_{k=1}^{b+1} S_{n,k}$$

$$P_n(b) = \{s_1 s_2 \dots s_n \in R_n : \max\{s_i\}_{i=1}^n = b\}.$$

and

card
$$P_n(b) = S_{n,b+1}$$

Bounded restricted growth functions

For an integer b > 0, $s = s_1 s_2 \dots s_n$ is a *b*-bounded restricted growth function if

 $s_i \leq b$ for all $1 \leq i \leq n$

 $R_n(b)$ denotes the set of *b*-bounded sequences in R_n

$$R_n(b) = \{s_1 s_2 \dots s_n \in R_n : \max\{s_i\}_{i=1}^n \le b\}.$$

 $R_n(b)$ is in bijection with the partitions of the set [n], into at most b + 1 nonempty subset and

$$\operatorname{card} R_n(b) = \sum_{k=1}^{b+1} S_{n,k}$$

 $P_n(b) = \{s_1 s_2 \dots s_n \in R_n : \max\{s_i\}_{i=1}^n = b\}.$

and

card
$$P_n(b) = S_{n,b+1}$$

Bounded restricted growth functions

For an integer b > 0, $s = s_1 s_2 \dots s_n$ is a *b*-bounded restricted growth function if

 $s_i \leq b$ for all $1 \leq i \leq n$

 $R_n(b)$ denotes the set of *b*-bounded sequences in R_n

$$R_n(b) = \{s_1 s_2 \dots s_n \in R_n : \max\{s_i\}_{i=1}^n \le b\}.$$

 $R_n(b)$ is in bijection with the partitions of the set [n], into at most b + 1 nonempty subset and

$$\operatorname{card} R_n(b) = \sum_{k=1}^{b+1} S_{n,k}$$

$$P_n(b) = \{s_1 s_2 \dots s_n \in R_n : \max\{s_i\}_{i=1}^n = b\}.$$

and

card
$$P_n(b) = S_{n,b+1}$$

The set $R_5(2)$

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations

(ロ) (同) (三) (三) (三) (○)

A *Gray code* for a combinatorial class is a listing of its objects in which only *"small change"* takes place between any two consecutive objects

A *d*-*Gray code* is a Gray code such that the Hamming distance between any two consecutive objects is at most *d*.

Known Gray codes for

- permutations: Steinhaus-Johnson-Trotter (1962-1964)
- involutions: Walsh (2001)
- derangements: Baril-Vajnovszki (2004)
- etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A *Gray code* for a combinatorial class is a listing of its objects in which only *"small change"* takes place between any two consecutive objects

A *d*-Gray code is a Gray code such that the Hamming distance between any two consecutive objects is at most *d*. Known Gray codes for

- permutations: Steinhaus-Johnson-Trotter (1962-1964)
- involutions: Walsh (2001)
- derangements: Baril-Vajnovszki (2004)
- etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We we present Gray codes and constant amortized time (CAT) algorithm for generating these Gray codes for

- *R*_n(*b*)
- *P_n(b*), *b* odd

Some previous works for generating R_n in Gray code:

- Knuth (1975)
- Ruskey (improvement of Knuth's algorithm)
- Ruskey and Savage: a loop-free implementation (1984)

ヘロン 人間 とくほ とくほ とう

We we present Gray codes and constant amortized time (CAT) algorithm for generating these Gray codes for

- *R*_n(*b*)
- $P_n(b)$, b odd

Some previous works for generating R_n in Gray code:

- Knuth (1975)
- Ruskey (improvement of Knuth's algorithm)
- Ruskey and Savage: a loop-free implementation (1984)

イロト イポト イヨト イヨト 三日

Order relations

The *lexicographic order* on $\{0, 1, ..., m-1\}^n$ is defined as:

$$s_1 s_2 \ldots s_n < t_1 t_2 \ldots t_n,$$

if

 $s_k < t_k$

where k is the leftmost position where s and t differ.

Definition

The *Reflected Gray Code order* on $\{0, 1, ..., m-1\}^n$ is defined as:

 $s_1 s_2 \ldots s_n \prec t_1 t_2 \ldots t_n,$

if either

- $\sum_{i=1}^{k-1} s_i$ is even and $s_k < t_k$, or
- $\sum_{i=1}^{k-1} s_i$ is odd and $s_k > t_k$,

where k is the leftmost position where s and t differ.

Order relations

The *lexicographic order* on $\{0, 1, ..., m-1\}^n$ is defined as:

$$s_1 s_2 \ldots s_n < t_1 t_2 \ldots t_n,$$

if

 $s_k < t_k$

where k is the leftmost position where s and t differ.

Definition

The *Reflected Gray Code order* on $\{0, 1, ..., m-1\}^n$ is defined as:

$$s_1 s_2 \ldots s_n \prec t_1 t_2 \ldots t_n,$$

if either

- $\sum_{i=1}^{k-1} s_i$ is even and $s_k < t_k$, or
- $\sum_{i=1}^{k-1} s_i$ is odd and $s_k > t_k$,

where k is the leftmost position where s and t differ.

Definition

The *co-Reflected Gray Code order* on $\{0, 1, ..., m-1\}^n$ is defined as:

$$s_1 s_2 \ldots s_n \triangleleft t_1 t_2 \ldots t_n$$

if either

- u_k is even and $s_k < t_k$, or
- u_k is odd and $s_k > t_k$,

where k is the leftmost position where s and t differ, and

$$u_k = \sum_{i=1}^{k-1} [s_i
eq 0 ext{ and } s_i ext{ is even}],$$

and $[\cdot]$ is the Iverson bracket.

 u_k = the number of non-zero even symbols in $s_1 s_2 \dots s_{k-1}$

・ロン・(部)とくほどくほどう ほ

Definition

The *co-Reflected Gray Code order* on $\{0, 1, ..., m-1\}^n$ is defined as:

$$s_1 s_2 \ldots s_n \triangleleft t_1 t_2 \ldots t_n$$

if either

- u_k is even and $s_k < t_k$, or
- u_k is odd and $s_k > t_k$,

where k is the leftmost position where s and t differ, and

$$u_k = \sum_{i=1}^{k-1} [s_i
eq 0 ext{ and } s_i ext{ is even}],$$

and $[\cdot]$ is the Iverson bracket.

 u_k = the number of non-zero even symbols in $s_1 s_2 \dots s_{k-1}$

イロト イポト イヨト イヨト 三日

Example: The set $\{0, 1, 2\}^3$ listed in \triangleleft order

000	100	220
001	101	221
002	102	222
010	110	212
011	111	211
012	112	210
022	122	202
021	121	201
020	120	200

⇒ < ⇒ >

ъ

Theorem

For any $n, b \ge 1$ and b odd, $R_n(b)$ listed in \prec order is a 3-Gray code.

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Let

- b ≥ 2 and odd
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \prec -last (resp. the \prec -first) sequence in $R_n(b)$ with the prefix a, then s has one of these forms:

- s = aM0...0 if $\sum_{i=1}^{k-1} s_i$ is even (resp. odd) and M is odd;
- s = aM(M + 1)0...0 if ∑_{i=1}^{k-1} s_i is even (resp. odd) and M is even;
- s = a0...0 if $\sum_{i=1}^{k-1} s_i$ is odd (resp. even),

where $M = \min\{b, \max\{s_i\}_{i=1}^{k} + 1\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let

- b ≥ 2 and odd
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \prec -last (resp. the \prec -first) sequence in $R_n(b)$ with the prefix a, then s has one of these forms:

- s = aM0...0 if $\sum_{i=1}^{k-1} s_i$ is even (resp. odd) and M is odd;
- s = aM(M + 1)0...0 if ∑_{i=1}^{k-1} s_i is even (resp. odd) and M is even;
- s = a0...0 if $\sum_{i=1}^{k-1} s_i$ is odd (resp. even),

where $M = \min\{b, \max\{s_i\}_{i=1}^k + 1\}$.

Let

● b ≥ 2 and odd

• $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \prec -last (resp. the \prec -first) sequence in $R_n(b)$ with the prefix a, then s has one of these forms:

- s = aM0...0 if $\sum_{i=1}^{k-1} s_i$ is even (resp. odd) and M is odd;
- s = aM(M + 1)0...0 if ∑_{i=1}^{k-1} s_i is even (resp. odd) and M is even;
- s = a0...0 if $\sum_{i=1}^{k-1} s_i$ is odd (resp. even),

where $M = \min\{b, \max\{s_i\}_{i=1}^k + 1\}$.

Let

- b ≥ 2 and odd
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \prec -last (resp. the \prec -first) sequence in $R_n(b)$ with the prefix a, then s has one of these forms:

- s = aM0...0 if $\sum_{i=1}^{k-1} s_i$ is even (resp. odd) and M is odd;
- s = aM(M + 1)0...0 if ∑_{i=1}^{k-1} s_i is even (resp. odd) and M is even;
- s = a0...0 if $\sum_{i=1}^{k-1} s_i$ is odd (resp. even),

where $M = \min\{b, \max\{s_i\}_{i=1}^k + 1\}$.

Let

- b ≥ 2 and odd
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \prec -last (resp. the \prec -first) sequence in $R_n(b)$ with the prefix a, then s has one of these forms:

- s = aM0...0 if $\sum_{i=1}^{k-1} s_i$ is even (resp. odd) and M is odd;
- s = aM(M + 1)0...0 if ∑_{i=1}^{k-1} s_i is even (resp. odd) and M is even;
- s = a0...0 if $\sum_{i=1}^{k-1} s_i$ is odd (resp. even),

where $M = \min\{b, \max\{s_i\}_{i=1}^{k} + 1\}$.

Let

- b ≥ 2 and odd
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \prec -last (resp. the \prec -first) sequence in $R_n(b)$ with the prefix a, then s has one of these forms:

- s = aM0...0 if $\sum_{i=1}^{k-1} s_i$ is even (resp. odd) and M is odd;
- s = aM(M + 1)0...0 if ∑_{i=1}^{k-1} s_i is even (resp. odd) and M is even;
- $s = a0 \dots 0$ if $\sum_{i=1}^{k-1} s_i$ is odd (resp. even),

where $M = \min\{b, \max\{s_i\}_{i=1}^k + 1\}$.

Theorem

For any $n \ge 1$, $b \ge 2$ and even, $R_n(b)$ listed in \triangleleft order is a 3-Gray code.

(ロ) (同) (目) (日) (日) (の)

Let

● b ≥ 2 and even

• $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \triangleleft -last (resp. the \triangleleft -first) sequence in $R_n(b)$, with the prefix a, then s has one of these forms:

- s = aM0...0 if u_k is even (resp. odd) and M is even;
- s = aM(M+1)0...0 if u_k is even (resp. odd) and M is odd;
- s = a0...0 if u_k is odd (resp. even),

where

 $M = \min\{b, \max\{s_i\}_{i=1}^{k} + 1\}$ $u_k = \sum_{i=1}^{k-1} [s_i \neq 0 \text{ and } s_i \text{ is even}],$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let

- b ≥ 2 and even
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \triangleleft -last (resp. the \triangleleft -first) sequence in $R_n(b)$, with the prefix a, then s has one of these forms:

- s = aM0...0 if u_k is even (resp. odd) and M is even;
- s = aM(M+1)0...0 if u_k is even (resp. odd) and M is odd;
- s = a0...0 if u_k is odd (resp. even),

where

 $M = \min\{b, \max\{s_i\}_{i=1}^{k} + 1\}$ $u_k = \sum_{i=1}^{k-1} [s_i \neq 0 \text{ and } s_i \text{ is even}],$

イロト イポト イヨト イヨト 三日

Let

- b ≥ 2 and even
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \triangleleft -last (resp. the \triangleleft -first) sequence in $R_n(b)$, with the prefix a, then s has one of these forms:

- s = aM0...0 if u_k is even (resp. odd) and M is even;
- s = aM(M+1)0...0 if u_k is even (resp. odd) and M is odd;
- s = a0...0 if u_k is odd (resp. even),

where

 $M = \min\{b, \max\{s_i\}_{i=1}^k + 1\}$

 $u_k = \sum_{i=1}^{k-1} [s_i \neq 0 \text{ and } s_i \text{ is even}],$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let

- b ≥ 2 and even
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \triangleleft -last (resp. the \triangleleft -first) sequence in $R_n(b)$, with the prefix a, then s has one of these forms:

- s = aM0...0 if u_k is even (resp. odd) and M is even;
- s = aM(M+1)0...0 if u_k is even (resp. odd) and M is odd;
- s = a0...0 if u_k is odd (resp. even),

where

 $M = \min\{b, \max\{s_i\}_{i=1}^k + 1\}$

 $u_k = \sum_{i=1}^{k-1} [s_i \neq 0 \text{ and } s_i \text{ is even}],$

<ロ> (四) (四) (三) (三) (三)

Let

- b ≥ 2 and even
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \triangleleft -last (resp. the \triangleleft -first) sequence in $R_n(b)$, with the prefix a, then s has one of these forms:

- s = aM0...0 if u_k is even (resp. odd) and M is even;
- s = aM(M+1)0...0 if u_k is even (resp. odd) and M is odd;

•
$$s = a0...0$$
 if u_k is odd (resp. even),

where

 $M = \min\{b, \max\{s_i\}_{i=1}^{k} + 1\}$ $u_k = \sum_{i=1}^{k-1} [s_i \neq 0 \text{ and } s_i \text{ is even}],$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let

- b ≥ 2 and even
- $a = a_1 a_2 \dots a_k, \, k < n$

If s is the \triangleleft -last (resp. the \triangleleft -first) sequence in $R_n(b)$, with the prefix a, then s has one of these forms:

- s = aM0...0 if u_k is even (resp. odd) and M is even;
- s = aM(M+1)0...0 if u_k is even (resp. odd) and M is odd;
- s = a0...0 if u_k is odd (resp. even),

where

$$M = \min\{b, \max\{s_i\}_{i=1}^{k} + 1\}$$

$$u_k = \sum_{i=1}^{k-1} [s_i \neq 0 \text{ and } s_i \text{ is even}],$$

米間 とくほ とくほ とうほう

Corollary

For any $n \ge 1$, R_n listed in both \prec and \triangleleft order are 3-Gray codes.

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Theorem

For any $n, b \ge 1$, b odd, $P_n(b)$ listed in \prec order is a 5-Gray code.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

```
procedure GEN1(k, dir, M: integer)
global s, n, bound: integer;
local i, u: integer;
if M = bound then M := bound - 1:
if k = n + 1 then TYPE():
else if dir is even then
       for i := 0 to M + 1
          s_{k} := i:
          if M < s_k then u := s_k; else u := M;
           GEN1(k + 1, i, u);
     else for i := M + 1 downto 0
          S_k := i:
          if M < s_k then u := s_k; else u := M;
           GEN1(k + 1, i + 1, u):
```

Generating algorithm for $R_n(b)$, $b \ge 1$ and odd, in RGC order

```
procedure GEN2(k, dir, M: integer)
global s, n, bound: integer;
local i, u: integer;
if M + 1 > bound then M := bound - 1;
if k = n + 1 then TYPE();
else if dir is even then
       for i := 0 to M + 1
          S_k := i:
          if M < s_k then u := s_k; else u := M;
           if s_k = 0 then GEN2(k + 1, 0, u);
          else GEN2(k + 1, i + 1, u);
     else for i := M + 1 downto 0
          b_{k} := i:
          if M < s_k then u := s_k; else u := M;
           if s_k = 0 then GEN2(k + 1, 1, u);
          else GEN2(k + 1, i, u);
```

Generating algorithm for $R_n(b)$, $b \ge 2$ and even, in co_RGC.

```
procedure GEN3(k, dir, M, flag: integer)
if k = n + 1 then TYPE();
else if bound – M = n - k + 1 and flag = 0 then
     Assign unique values for s_k \dots s_n;
     TYPE():
else if M = bound then M := M - 1; flag := 1;
     if dir is even then
       for i = 0 to M + 1
          S_k := i:
          if M < s_k then u := s_k; else u := M;
           GEN3(k + 1, i, u, flag):
     else for i = M + 1 downto 0
          S_k := i;
          if M < s_k then u := s_k; else u := M;
           GEN3(k + 1, i + 1, u, flag);
```

Generating algorithm for $P_n(b)$, $b \ge 1$ and odd, with respect to RGC order

Example The set $R_5(2)$ isted in \triangleleft is

00000	01000	01112
00001	01001	01122
00010	01002	01121
00011	01010	01120
00012	01011	01220
00100	01012	01221
00101	01022	01222
00102	01021	01212
00110	01020	01211
00111	01100	01210
00112	01101	01202
00122	01102	01201
00121	01110	01200
00120	01111	
	1	1

<ロト <回 > < 注 > < 注 > 、

æ

Thank you !

ありがとう

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで