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Set partitions

A set partition of [n] = {1,2, . . . ,n} is a collection

D0,D1, . . . ,Dk−1

of disjoint subsets (blocks) of [n] whose union is [n]
A partition of [n] is in standard form if

min D0 < min D1 < · · · < min Dk−1

and in this case the partition is denoted

D0/D1/ · · · /Dk−1
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The number of partitions of a set of cardinality n is Bn, the nth
Bell number
The number of partitions of a set of cardinality n, into k
nonempty subset is Sn,k , the Stirling numbers of the second
kind:

Bn =
n∑

k=1

Sn,k
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Restrictive growth functions

A restricted growth function of length n is an integer sequence
s = s1s2 · · · sn such that

s1 = 0, and
0 ≤ si+1 ≤ max{s1, . . . , si}+ 1, for all 1 ≤ i ≤ n − 1
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There is a bijection between the set of restricted growth
functions of length n and the set of partitions of [n], namely:

s1s2 · · · sn 7→ D0/D1/ · · · /Dk−1

if and only if sj = i implies j ∈ Di ; or, conversely,

D0/D1/ · · · /Dk−1 7→ s1s2 · · · sn

if and only if j ∈ Di implies sj = i .
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Example

{{2,5}, {6}, {4,7}, {1,3,8}} is apartition of {1,2, . . . ,8}
{{1,3,8}, {2,5}, {4,7}, {6}} its standard form
1,3,8/2,5/4,7/6
1,3,8︸ ︷︷ ︸

D0

/ 2,5︸︷︷︸
D1

/ 4,7︸︷︷︸
D2

/ 6︸︷︷︸
D3

0 1 0 2 1 3 2 0 its restricted growth function

Rn denotes the set of restricted growth functions of length n
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Bounded restricted growth functions

For an integer b > 0, s = s1s2 . . . sn is a b-bounded restricted
growth function if

si ≤ b for all 1 ≤ i ≤ n

Rn(b) denotes the set of b-bounded sequences in Rn

Rn(b) = {s1s2 . . . sn ∈ Rn : max{si}ni=1 ≤ b}.
Rn(b) is in bijection with the partitions of the set [n], into at most
b + 1 nonempty subset and

card Rn(b) =
b+1∑
k=1

Sn,k

Pn(b) = {s1s2 . . . sn ∈ Rn : max{si}ni=1 = b}.
and

card Pn(b) = Sn,b+1
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The set R5(2)

0 0 0 0 0 0 1 0 0 0 0 1 1 1 2
0 0 0 0 1 0 1 0 0 1 0 1 1 2 2
0 0 0 1 0 0 1 0 0 2 0 1 1 2 1
0 0 0 1 1 0 1 0 1 0 0 1 1 2 0
0 0 0 1 2 0 1 0 1 1 0 1 2 2 0
0 0 1 0 0 0 1 0 1 2 0 1 2 2 1
0 0 1 0 1 0 1 0 2 2 0 1 2 2 2
0 0 1 0 2 0 1 0 2 1 0 1 2 1 2
0 0 1 1 0 0 1 0 2 0 0 1 2 1 1
0 0 1 1 1 0 1 1 0 0 0 1 2 1 0
0 0 1 1 2 0 1 1 0 1 0 1 2 0 2
0 0 1 2 2 0 1 1 0 2 0 1 2 0 1
0 0 1 2 1 0 1 1 1 0 0 1 2 0 0
0 0 1 2 0 0 1 1 1 1
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Gray codes

A Gray code for a combinatorial class is a listing of its objects in
which only “small change” takes place between any two
consecutive objects
A d-Gray code is a Gray code such that the Hamming distance
between any two consecutive objects is at most d .
Known Gray codes for

permutations: Steinhaus-Johnson-Trotter (1962-1964)
involutions: Walsh (2001)
derangements: Baril-Vajnovszki (2004)
etc.
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Generating algorithms

We we present Gray codes and constant amortized time (CAT)
algorithm for generating these Gray codes for

Rn(b)
Pn(b), b odd

Some previous works for generating Rn in Gray code:
Knuth (1975)
Ruskey (improvement of Knuth’s algorithm)
Ruskey and Savage: a loop-free implementation (1984)
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Order relations

The lexicographic order on {0,1, . . . ,m − 1}n is defined as:

s1s2 . . . sn < t1t2 . . . tn,

if
sk < tk

where k is the leftmost position where s and t differ.

Definition
The Reflected Gray Code order on {0,1, . . . ,m − 1}n is defined
as:

s1s2 . . . sn ≺ t1t2 . . . tn,

if either∑k−1
i=1 si is even and sk < tk , or∑k−1
i=1 si is odd and sk > tk ,

where k is the leftmost position where s and t differ.
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Definition
The co-Reflected Gray Code order on {0,1, . . . ,m − 1}n is
defined as:

s1s2 . . . sn / t1t2 . . . tn,

if either
uk is even and sk < tk , or
uk is odd and sk > tk ,

where k is the leftmost position where s and t differ, and

uk =
k−1∑
i=1

[si 6= 0 and si is even],

and [·] is the Iverson bracket.
uk = the number of non-zero even symbols in s1s2 . . . sk−1
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Example: The set {0,1,2}3 listed in / order

0 0 0 1 0 0 2 2 0
0 0 1 1 0 1 2 2 1
0 0 2 1 0 2 2 2 2
0 1 0 1 1 0 2 1 2
0 1 1 1 1 1 2 1 1
0 1 2 1 1 2 2 1 0
0 2 2 1 2 2 2 0 2
0 2 1 1 2 1 2 0 1
0 2 0 1 2 0 2 0 0
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The main results

Theorem
For any n,b ≥ 1 and b odd, Rn(b) listed in ≺ order is a 3-Gray
code.
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Proposition
Let

b ≥ 2 and odd
a = a1a2 . . . ak , k < n

If s is the ≺-last (resp. the ≺-first) sequence in Rn(b) with the
prefix a, then s has one of these forms:

s = aM0 . . . 0 if
∑k−1

i=1 si is even (resp. odd) and M is odd;

s = aM(M + 1)0 . . . 0 if
∑k−1

i=1 si is even (resp. odd) and M
is even;
s = a0 . . . 0 if

∑k−1
i=1 si is odd (resp. even),

where M = min{b,max{si}ki=1 + 1}.
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Theorem

For any n ≥ 1, b ≥ 2 and even, Rn(b) listed in / order is a
3-Gray code.
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Proposition
Let

b ≥ 2 and even
a = a1a2 . . . ak , k < n

If s is the /-last (resp. the /-first) sequence in Rn(b), with the
prefix a, then s has one of these forms:

s = aM0 . . . 0 if uk is even (resp. odd) and M is even;
s = aM(M +1)0 . . . 0 if uk is even (resp. odd) and M is odd;
s = a0 . . . 0 if uk is odd (resp. even),

where
M = min{b,max{si}ki=1 + 1}
uk =

∑k−1
i=1 [si 6= 0 and si is even],
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Corollary
For any n ≥ 1, Rn listed in both ≺ and / order are 3-Gray codes.
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Theorem

For any n,b ≥ 1, b odd, Pn(b) listed in ≺ order is a 5-Gray
code.
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Generating algorithmes

procedure GEN1(k , dir , M: integer)
global s, n, bound : integer;
local i , u: integer;
if M = bound then M := bound − 1;
if k = n + 1 then TYPE();
else if dir is even then

for i := 0 to M + 1
sk := i ;
if M < sk then u := sk ; else u := M;
GEN1(k + 1, i ,u);

else for i := M + 1 downto 0
sk := i ;
if M < sk then u := sk ; else u := M;
GEN1(k + 1, i + 1,u);

Generating algorithm for Rn(b), b ≥ 1 and odd, in RGC order
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procedure GEN2(k , dir , M: integer)
global s, n, bound : integer;
local i , u: integer;
if M + 1 > bound then M := bound − 1;
if k = n + 1 then TYPE();
else if dir is even then

for i := 0 to M + 1
sk := i ;
if M < sk then u := sk ; else u := M;
if sk = 0 then GEN2(k + 1,0,u);
else GEN2(k + 1, i + 1,u);

else for i := M + 1 downto 0
bk := i ;
if M < sk then u := sk ; else u := M;
if sk = 0 then GEN2(k + 1,1,u);
else GEN2(k + 1, i ,u);

Generating algorithm for Rn(b), b ≥ 2 and even, in co-RGC
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procedure GEN3(k , dir , M, flag: integer)
if k = n + 1 then TYPE();
else if bound −M = n − k + 1 and flag = 0 then

Assign unique values for sk . . . sn;
TYPE();

else if M = bound then M := M − 1;flag := 1;
if dir is even then

for i := 0 to M + 1
sk := i ;
if M < sk then u := sk ; else u := M;
GEN3(k + 1, i ,u, flag);

else for i = M + 1 downto 0
sk := i ;
if M < sk then u := sk ; else u := M;
GEN3(k + 1, i + 1,u, flag);

Generating algorithm for Pn(b), b ≥ 1 and odd, with respect to
RGC order

Ahmad Sabri, Vincent Vajnovszki Restricted growth functions: Gray code generations



Example
The set R5(2) isted in / is

0 0 0 0 0 0 1 0 0 0 0 1 1 1 2
0 0 0 0 1 0 1 0 0 1 0 1 1 2 2
0 0 0 1 0 0 1 0 0 2 0 1 1 2 1
0 0 0 1 1 0 1 0 1 0 0 1 1 2 0
0 0 0 1 2 0 1 0 1 1 0 1 2 2 0
0 0 1 0 0 0 1 0 1 2 0 1 2 2 1
0 0 1 0 1 0 1 0 2 2 0 1 2 2 2
0 0 1 0 2 0 1 0 2 1 0 1 2 1 2
0 0 1 1 0 0 1 0 2 0 0 1 2 1 1
0 0 1 1 1 0 1 1 0 0 0 1 2 1 0
0 0 1 1 2 0 1 1 0 1 0 1 2 0 2
0 0 1 2 2 0 1 1 0 2 0 1 2 0 1
0 0 1 2 1 0 1 1 1 0 0 1 2 0 0
0 0 1 2 0 0 1 1 1 1
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Thank you !
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