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Abstract

In 1985 Simion and Schmidt gave a constructive bijection ¢ from the set of all length
(n — 1) binary strings having no two consecutive 1s to the set of all length n permutations
avoiding all patterns in {123,132, 213}.

In this paper we generalize o to an injective function from {0,1}"~! to the set S, of all
length n permutations and derive from it four bijections ¢ : P — @Q where P C {0,1}"~!
and @ C S,,. The domains are sets of restricted binary strings and the codomains are sets of
pattern-avoiding permutations. As a particular case we retrieve the original Simion-Schmidt
bijection.

We also show that the bijections obtained are actually combinatorial isomorphisms, i.e.,
closeness-preserving bijections. Three of them have known Gray codes and generating al-
gorithms for their domains and we present similar results for each corresponding codomain,
under the appropriate combinatorial isomorphism.

Keywords: pattern-avoiding permutations, Fibonacci and Lucas strings, constructive bi-
Jections, combinatorial isomorphisms, Gray codes.

1 Introduction and Motivation

A permutation 7 of the set of integers [n] = {1,2,...,n} is a bijection from [n] onto itself and
we denote by S, the set of all such permutations. For two permutations 7 € Sy and © € 5,
with & < n, we say that a subsequence my , 7, ..., m, of 7 is of {ype 7 whenever 7, < 7,

if and only if ; < 7; forall 7,7, 1 < ¢,5 < k. In this context the permutation 7 is called
pattern. For example, the subsequence 523 of the permutation 15423 is of type 312. Now let
T ={r,79,...,7} be aset of patterns. We say 7 avoids T whenever 7 contains no subsequence
of type 7; for all 7; € T, and we will denote by S, (T) the set of all such permutations. For
example, the permutation 15423 € S5 avoids the set of patterns {231,213} because it has no
subsequence of type 231 or 213; so we have 15423 € S5(231,213) but 15423 ¢ S5(312). Clearly
Sn(Tl) C Sn(TQ) if Ty C 17.

This paper is inspired by Simion-Schmidt’s result [1, Proposition 15*] which gave a construc-
tive bijection ¢ from F,_; to S, (123,132,213). Here F,_; is the set of all length (n — 1) binary
strings having no two consecutive 1s; such strings are called Fibonacci strings. In this paper we
generalize ¢ to an injective but not surjective function ¢ from {0,1}"~! to S, and we derive
four bijections ¢ : P — @ where P C {0,1}" ! and Q C S,. The pairs (P, Q) are:

1. ({0,131, 5,(123,132)),
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2. <FT(LP_)1, S,(123,132, crp)), where Fézi)l is the set of length (n — 1) binary strings with no p
consecutive ones and o, is the length (p+ 1) permutation p(p—1)(p—2)...1(p+1) (when
p = 2, ¢ becomes the original Simion-Schmidt bijection),

3. <Cn—1,k7 7’1116(123,132)>7 where C,_1 is the set of binary strings in {0,1}"~! having

exactly £ 1s and S/ ,(123,132) is the set of permutations in S,(123, 132) having exactly k&
non-inversions (see Definition 1), and

4. <I('7(f_)1, S,(123, 132, 0y, Tp)), where K®. is a class of binary strings counted by the Lucas

n—1

number and 7}, is a set of generalized patterns (defined formally after the proof of Lemma 3).

We denote by ¢ the Simion-Schmidt bijection and its extensions. We prove that the four bi-
jections ¢ : P — ) are combinatorial isomorphisms; that is, closeness-preserving bijections. The
first three of them have known Gray codes and generating algorithms for their domains; hence
we present a Gray code and sketch a generating algorithm for S, (123, 132), 5,,(123,132, 0,), and

é,k(1237 132), which are the images of these domains under the corresponding combinatorial
isomorphism.

The interest of our results is two-fold: we show that the Simion-Schmidt bijection can be
extended to other combinatorial objects and all of those bijections are isomorphisms, that is,
satisfy strong combinatorial properties and so make it possible to transform, under these iso-
morphisms, some known properties of certain binary strings into the corresponding properties of
permutations avoiding certain patterns. This paper is the extended version of [2] and the rest of
it is organized as follows. Section 2 presents the generalization of the Simion-Schmidt bijection
and the derivation of the four bijections. Section 3 shows that these bijections are actually
combinatorial isomorphisms, Section 4 proposes a Gray code for each of the codomains of the
first three bijections, and Section 5 presents some graph-theoretical consequences and sketches
a generating algorithm for each Gray code. The final section gives some concluding remarks.

2 The Generalized Simion-Schmidt Injection

For any b = byby---b,_1 € {0,1}"~! we construct a permutation = € S,, which has its i-th entry,
7;, given by the following rule. If X; = {1,2,--- ,n} — {m, 79, -+, m_1}, then set

| the largest element in X; il b; = 0
i = the second largest element in X; if b; = 1

(1)

and finally 7, is the single element in X,,.

We denote by o(b) the unique image of b € {0,1}"~! under this procedure. Furthermore,
two different strings in {0,1}"~! are mapped into two different permutations in S, ; therefore
¢ :{0,1}""! — S, is an injective function and cardinality considerations show that it is not a
bijection.

The construction above was already given by Simion and Schmidt [1] in a particular context,
namely as a bijection between length (n — 1) binary strings with no two consecutive ones and
permutations in S5,(123,132,213). In this section we generalize their result.



The cases ¢ : {0,1}""! — §,,(123,132) and ¢ : F¥), — 5,(123,132,0,)

The enumeration of permutations avoiding the patterns 123 and 132 appears for instance
in [3] and they characterization in [4] and later in [5]; in [4] are also enumerated permutations
avoiding two length 3 patterns and a length p pattern. The next lemma gives two generalizations
of ¢; instead of using the characterization in [4], we give here, for the sake of clarity, a complete
proof.

Lemma 1.
1. ¢:{0,1}""1 — S,(123,132) is a bijection.

2. @ F;fi)l — 5,(123,132, 0,) is a bijection, where Fézi)l is the set of length (n — 1) binary

strings having no p consecutive 1s and o, is the length (p + 1) permutation p(p — 1)(p —
2)...1(p+1).

Proof. 1. Suppose that 7 € S,,(123,132) and that k&, 1 < k < n, are such that 7, = n. If k > 1,
then m; > myy for all 2, 1 <17 < k — 1, otherwise 123 could not be avoided. Moreover, m; > 7;
for all i < k and j > k, otherwise m;m;7; is a sequence of type 132. Therefore, 7 = mymy ... 770’
with m; =mqy1+1for 1 <i< k—1and 7’ € 5,_,(123,132).

If # € 5,(123,132), then by induction, there exist integers 0 = kg < k1 < ... < k, < ... <
k., = n such that 7 is a sequence of m blocks

M= TUTG e Ty w e« They 41T ke 42 =« Ty« o e Tk 41T k1 +2 + - - Thiy (2)
such that
e the rightmost elements of each block are in decreasing order: n =my > g, > ... > 7,
and

e in each block containing more than one element

— the first element equals the last one minus one: 7, _, 41 = m, — 1, and

— all elements, except the last one, are consecutive integers in decreasing order: m, =
w1+ 1fork, 1 +1 <0<k, —1.

It is easy to check that & € {0,1}"~! defined by

b — Oif e =k, forsomer,1<r<m
*7 1 1 otherwise

satisfies ¢(b) = 7.
2. In addition, if 7 avoids 6, = p(p—1)(p—2) ...1(p+1), then each block mx,_, 417k, _,42... 7k,
has length at most p and b as defined above has no p consecutive 1s. O

Figure 1 shows the permutations 976548213 and 978546213 in Sg(123,132) in array repre-
sentation; the rightmost element of each block, as mentioned in the proof above, is underlined.
Table 1 gives the domains and codomains of the bijection ¢ : {0,1}*"! — S,(123,132), and
@ : F752_)1 — 5,(123,132,213), for n = 5. The listing actually is in Gray code order (see Sec-
tion 4).



Table 1: (a) The set {0,1}* and S5(123,132), its image under .
(b) The set Ff) and S5(123,132,213), its image under ¢.

(a) (b)

{0, 1371 S5(123,132) || F@ | 55(123,132,213)
0111 53214 0100 53421
0110 53241 0101 53412
0100 53421 0001 54312
0101 53412 0000 54321
0001 54312 0010 54231
0000 54321 1010 45231
0010 54231 1000 45321
0011 54213 1001 45312
1011 45213
1010 45231
1000 45321
1001 45312
1101 43512
1100 43521
1110 43251
1111 43215

The case ¢ : Cp_1 1 — S;z,k(1237 132)

Now let C),_1 x be the set of strings in {0, 1}7~! with exactly & occurrences of 1. Strings in
Cn—1, are the usual binary string representation of the combinations of £ objects chosen from

(n—1);80 [Croq ] = (”;1)

Definition 1. In a permutation © € S,, a pair (1, j), with i < j, is called an inversion iff m; > 7;
and a non-inversion iff m; < 7;.

We write S! , (T') to denote the set of permutations in S, (7") having exactly k non-inversions.
Lemma 2. ¢ :Cp_q 1 — S) ,(123,132) is a bijection.

Proof. Suppose that b € {0,1}"! and that i, 1 < i < n, are such that b; = 1. Then 4 induces
exactly one non-inversion in 7 = ¢(b). Indeed, let j be the position of the leftmost 0 bit in b at

Table 2: The set Cy 2 of all length 4 binary strings with 2 occur-
rences of 1s and S% 5(123,132) its image under ¢.

Caa  SL,(123,132)

0110 53241
0101 53412
0011 54213
1010 45231
1001 45312
1100 43521




the right of 7 if any, and j = n otherwise. In 7, m; > m for all £ > 7 except for £ = j;so (7,7) is
a non-inversion and the number of non-inversions in 7 equals the number of 1s in b. O

Table 2 shows the domain and codomain of the bijection ¢ : Ch_yp — S! .(123,132) for
n=2>5and k = 2. (4 is listed so that consecutive strings differ in two positi07ns; when these
positions are consecutive the corresponding permutations differ in 3 positions and in 4 positions
otherwise. As we will see in Section 3 this is valid for all n.

By considering the transformation given by (1) of the function ¢ it is easy to check the
following.

Remark 1. Leti, 1 <i<n-—1, and b,b’ € {0,1}"! and suppose that by = b}, except for { = i.
Then m = ¢(b) and ©" = ¢(b') are such that 7y = 7w, except for £ € {i,j} with j being as follows:
the leftmost position at the right of © where b; = 0 if any, and n otherwise.

The case ¢ : Kflp_)l — S,(123,132,0,,Tp)
(p)

We now consider the set K’ of binary strings in Fép) which contain at least two 0s in their
length p + 1 prefix. For example, the only binary string in Ff) but not in Kf) is 1010 (see

Table 1) and F5(3) \ Ké?’) = {10110,11011,11010}. In the following we show that, in general, the

cardinality of Kflp) is given by the p-th order Lucas number [6] and the image of Kép) under ¢

is a class of (generalized) pattern-avoiding permutations.

Lemma 3. Kflp)| = |F7£p)| if n <p and |K7(~Lp)| is the n-th, p-th order Lucas number otherwise.

Proof. Obviously, for n < p, any string in Fép) is also in Kép). For the second part of the

statement, we give an indirect proof by showing that KT(Lp), n > p, is equinumerous with a set of
binary strings which in turn is known to be counted by the p-th order Lucas number. Consider
the set L%p) of binary strings in Egp) which do not begin with 1* and end with 1" such that

u+v > p. L&p) is extensively studied in the literature and it is known as the set of Lucas strings

since |L£Lp)| is the n-th Lucas number of p-th order (see for instance [6]). Clearly, each string in

Lgp), n > p, contains at least two 0s; so it has the form 1*0f01Y with u4+v < pand f € F,gp) for

an appropriate k; in addition, the string 1010 f belongs to Kép). It is easy to see that for any

le ngp), n > p, with £ of the form 1*0f01", the transformation £ — 1*01Y0f induces a bijection
from Lglp) to Kfzp). O

In [7] a class of pattern-avoiding permutations counted by Lucas numbers is presented. The
patterns are ‘> and ‘7’ generalized patterns and the result is obtained via the generating trees
method. The next lemma extends ¢ to this class.

For two permutations 7 € S; and © € S, with £ < n and an integer 7, 1 < j < k,
we say that a subsequence 7wy my, ...my, of 7 is of generalized type TiTo...7; 1 Tj41 .. . Tho1Tk
whenever 7w, m,,...,my, is of type 7 and ;41 = {; + 1. 7 avoids the generalized paltern
TIT2...TjiTj4+1 - .. Th—1T if it avoids the classical pattern 775 ... 7;7j41 ... Tk—1 7% and the symbols
which play the role of 7; and 7,41 in 7 are adjacent. For example, 564231 € S¢(34:12) but 645231
and 563421 are not in Sg(34:12).

A barred pattern 7 of length k is a (possibly generalized) pattern having a bar over one of
its elements. Let 7 be the length k pattern identical to 7 but unbarred and 7 the pattern on
{1,2,...,k — 1} made up of the (k — 1) unbarred elements of 7. A permutation = € S,, avoids



the pattern 7 if any subsequence of type 7 in © can be extended to a sequence of type 7. For
example 645231 € Sg(534:12) and 563421 ¢ Sg(534:12).

For a given p > 2 and k, 2 < k < p, let up denote the length p — &k 4+ 1 decreasing sequence
(p+ 1)p...(k+1) and vy the length &£ — 1 decreasing sequence (k — 1)(k —2)...1. We now
consider the set of generalized patterns

T, ={(p+3)uk(p+2):opk[2 < k < p.
For example, T = {534:12} and T5 = {6435:12, 645:213}.
We note that the permutations in S,,(123, 132, 0, T},) are precisely those in 5, (123,132, 5,),
where the total length of the two initial blocks (as in the proof of Lemma 1) does not exceed
p—+ 1. Since K(p) is the set of strings in F(p)

1 1 with at least two Os in their p + 1 prefix we can
state:

Lemma 4. ¢: KP S, (123,132, 0,,T,) is a bijection.

n—1

3 The Isomorphism ¢

In a combinatorial class we say that two objects are close if they differ in some pre-specified,
usually small, way; the Hamming distance is a customary specification, see for instance [8]. A
(combinatorial) isomorphism between two combinatorial classes is a closeness-preserving bijec-
tion, i.e., two objects in a class are close if and only if their images under this bijection are
also close. In this section we show that the bijections in Lemmata 1, 2 and 4 are actually
isomorphisms.

Definition 2.

1. Two binary strings in {0,1}"~! are 1-close if they differ in a single position.
2. Two permutations in S,(123,132) are 1-close if they differ by the transposition of two
entries.

For example, the binary strings 0111 and 0110 are 1-close and so are their images under ¢,
i.e., the permutations 53214 and 53241.

Lemma 5. Let bt € {0,1}" ! and 7 = ¢(b), 7 = (b)) € 5,(123,132). The following
propositions are equivalent:

1. b and b are 1-close in {0,1}"71
2. m and ' are 1-close in S, (123,132),

3. the decomposition in blocks of ™ (as in relation (2)) is obtained from the one of w either
by splitting a block (into two adjacent blocks) or by merging two adjacent blocks.

Proof. ‘1 = 2’. This implication follows directly from Remark 1.

‘2= 3". Let m € 5,,(123,132) and suppose 7’ is obtained from 7 by transposing the entries in
positions 7 and j, 1 <7 < j < n. If 7’ avoids 123 and 132 then, in the permutation 7 (with the
notations in relation (2)), j must be the rightmost entry in its block and 7 is either (a) in the
same block as j, or (b) the rightmost entry of the precedent block. In case (a) 7’ is obtained from



7 by splitting the block containing j into two blocks and in case (b) by merging two adjacent
blocks.

‘3 = 1’. By considering the definition of the function ¢, with the notations in the previous
point, we find that b, = b} except for £ = 7. In case (a) b; = 1 and b} = 0; and in case (b) b; =0
and b = 1. See Figure 1 for an example. O

By the above lemma and since the restriction of a combinatorial isomorphism to one of its
subclasses remains a combinatorial isomorphism we have:

Corollary 1. The bijections
e ©:{0,1}"1 = §,(123,132),
o 0:FW - 5,(123,132,0,) and

o o: K® 5 5,(123,132,0,,T,)

n—1

are combinatorial isomorphisms.
Under Definition 2, C,_; ; contains no 1-close strings and now we relax this definition.
Definition 3.

1. Two binary strings in Cy,_q  are 2-close if they differ by the transposition of two bils.
2. Two permutations in S! ,(123,132) are 2-close if they differ by two transpositions.

Corollary 2. The bijection ¢ : Cpo_q ) — S! (123,132) is a combinatorial isomorphism under
Definition 3.

Proof. Let b and b' be two 2-close strings in C,,_q , and m and 7’ their images in 57’17,9(123, 132)
under the bijection . Consider a binary string ¢ € {0,1}"~! such that ¢ differs from b and from
b' in a single position and § € 5,(123,132) the image of ¢ under ¢. Notice that ¢ ¢ C\,_q x; so
5 ¢ 57’27,9(123, 132), and there are two such strings ¢. By Lemma 5, § differs from 7 and from =’
by a transposition, thus 7 differs from 7’ by two transpositions. Similarly, if 7 and 7’ are 2-close
in 57’17,9(123, 132), then so are their pre-images in C),_q k. O

Notice that when the two transpositions in the previous proof have no disjoint domains, 7
and 7’ differ by a length three cycle. For example, the transition from the first permutation to
the second one in Sy ,(123,132) as shown in Table 2, namely from 53241 to 53412, is done via
a length three cycle.

4 Gray Codes

A list £ for a string set L is an ordered list of the elements of L. If the elements of £ are in
some order such that two consecutive elements are close, the list is called a Gray code list.

Let o be an integer or a string and £ a list of strings. Then « - £ denotes the list obtained
by concatenating « to each string of £; e.g., if &« = 4 and £ = {123,132,213}, then o - L =
{4123,4132,4213}. If £’ is another list, then £ o £’ is the concatenation of the two lists; e.g., if
L' ={231,312,321}, then £o £’ = {123,132,213,231,312,321}. Furthermore, by £ we denote

-~



(a) (b)

Figure 1: The permutations 976548213 and 978546213 in Sg(123, 132) in array representation. Transpos-
ing two entry results in block-splitting (from (a) to (b)), or block-merging (from (b) to (a)).

the reverse of the list £ and £* is the list obtained from £ by increasing the largest entry in all
strings of £ by 1. Thus, with £ as above, £ = {213,132,123} and £* = {124, 142, 214}.

In this section we construct Gray codes for S,,(123,132), 5,(123,132, 0,), and S! ,(123,132)
from Gray codes for their pre-images under the bijection ¢. We begin this section with the
concept of dual reflected order. The dual reflected order, defined below, is a slight modification
of reflected order [9] and, like lexicographical order, both of them are particular cases of genlex
order [10], that is, any set of strings listed in such an order has the property that strings with a
common prefix are contiguous.

Definition 4 ([11]). For two strings b = biby...b, and b’ = bib, .. b, in {0,1}" we say that
b is less than b' in dual reflected order if biby...by, the length k prefix of b, contains an odd
number of 0s, where k is the leftmost position with by # b}

In [11] it is noted that: (1) b is less than &' in dual reflected order iff &’ is less than & in
reflected order, with b and & the bitwise complement of b and &'; (2) like reflected order, dual
reflected order induces a Gray code for {0,1}" and C, i, but only the last one yields a Gray

code for Fép). Here we adopt this order relation in constructing Gray codes for 5,,(123,132),
S»(123,132,213), and S] ,(123,132).

Gray code for S, (123,132)

The following Gray code for the set {0, 1}" can be obtained from the famous Binary Reflected
Gray Code [9] by replacing in it all 0 bits in each string by 1 bits and vice-versa, and then
reversing the obtained list; two consecutive strings differ in a single position and the listing
order is dual reflected order [12].

B 0 if n=0
Bn B { 0 'En—l ol- Bn—l if n Z 1. (3)

By applying ¢, the list B,y is transformed into the following list for the set S,,(123, 132):
_ {1} if n=1
5n(123,132) = { n-S,_1(123,132)0 (n — 1) - 85_,(123,132) if n > 2. 4)

Since ¢ is an isomorphism, two consecutive permutations in the list (4) differ just by a transpo-
sition; so §,,(123,132) is a Gray code. See Table 1 (a) for B4 and S5(123, 132).



Gray code for S,,(123,132,0)
The following list is a Gray code for the set FP [12]:

0 if n=0
}-T(Lp) = 10,1} if n=1 (5)
0-7%, 01077, 0. 017107 it n>1

n

)

with two conventions: (1) the list o - ]:Epl consists of the single-string list obtained from « by
deleting its last bit, and (2) ]:Ept) is the empty list for £ > 1. In the list above, two consecutive
strings differ in a single position and the listing order is again the dual reflected order. By
applying ¢, the list ]—'75]7_)1 is transformed into the following list for the set S,,(123, 132, 0,):

{1} if n=1
{21,12} if n=2
) n-8,-1(123,132,0y)
Sn(128,132,0,) = o(n—1)n-8,_(123,132,0,) (6)
oln—1(n-2)...(n—p+1)n-8,_,(123,132,0,) if n>2.

with the conventions: (1) the list ar-Sp(123,132,0,) = o, and (2) S_+(123,132, 0,) is the empty
list for ¢ > 0.
Since ¢ is an isomorphism, two consecutive permutations in the list (6) differ just by a transpo-

sition; so §,,(123, 132, 0,,) is a Gray code. See Table 1 (b) for ff) and S5(123,132,213).
Gray code for 5], ,(123,132)

The following list is the restriction of B,, defined in (3) to the set C, ;. Two consecutive
strings differ in two positions and this list is similar to Liu-Tang Gray code [13] except that it
lists the strings in dual reflected order.

0 ifn=20
co. = {0"} ifn>1land k=0 (7)
mk = {1} ifn>1land k=n :

0- En—l,k ol 'Cn_l’]g_l ifn>1and 0 < k < n.

Under the function ¢, C,_1  is transformed to the following list for the set 57’17,6(1237 132):

{1} ifn=1
, _ {n(n—-1)...21} ifn>2and k=0
n7k(123’ 132) = {(n=1)(n—=2)...21n} ifn>2and k=n (8)

-8,y x(123,132)0 (n— 1) - 8, ,_1(123,132) ifn>2and 0<k < n.

Since @ is an isomorphism, two consecutive permutations in the list (8) differ by two transposi-
tions; so ), ,(123,132) is a Gray code. See Table 2 for C45 and for S5 ,(123,132).



5 Graph Theoretical and Algorithmic Considerations

Here we present some graph-theoretical interpretations of the previous results. The graph in-
duced by a combinatorial class has as its vertices the objects of the class, and two vertices of
this graph are adjacent if the two corresponding combinatorial objects are close. We denote
by G(X) the graph induced by the combinatorial class X and the hypercube @), is the graph
G({0,13").

Two graphs G(X) and G(Y) are isomorphic if there is a bijection p: X — Y such that two
vertices a and b are adjacent in G(X) if and only if the vertices p(a) and p(b) are adjacent in G(Y);
so combinatorial and graph isomorphism are equivalent notions; in this case G'(p(X)) = p(G(X)).

A graph is connecled if there exists a path between any two vertices. A Hamiltonian path
is a path between two vertices of a graph which visits each vertex exactly once. A Hamiltonian
path corresponds to a Gray code for the related class.

Figure 2 (a) and (b) show the isomorphic graphs Q3 and G(S4(123,132)). Hamiltonian
paths—or equivalently, Gray codes for the corresponding combinatorial classes—are in thick
lines. The graph G(Fézi)l) is the restriction of @),,—; to the set Fép_)l, and in Figure 2 (c) the
subgraph G(Fé(“))) is in thick lines. Similarly, under the isomorphism ¢ : Fﬁfi)l — 5,(123,132,0,),
the graph G(5,(123,132,0,)) is the restriction of G(S5,(123,132)) to the set S, (123,132, 0,).

For all £, 1 < k < mn — 1, and under Definition 2, the restriction of (),_; to the set C}_;
is not connected because the Hamming distance between any two strings in C),_ ; is at least 2.
Now, let G™ be the m-th power of the graph G, i.e., the graph where two vertices are adjacent
if there is a path in G of length at most m between these vertices. In this context the graph
G(Ch—1,%) with respect to the closeness Definition 3 is the restriction of Q%_l to the set C_q i,
and under the isomorphism ¢ : Cy_y x — 5] ;(123,132), G(S5], ,(123,132)) is the restriction of
G?(5,(123,132)) to the set S, x(123,132). In Figure 2 (d), Q% and its restriction to C34 are
depicted.

011 111 4213 3214 011 111 011 111
001 101 4312| 3412 001 101 001 h
010 110 4231 3214 10 110 0 7110
000 100 4321 3421 000 100 000 100

(a) (b) () (d)

Figure 2: (a) The graph @3, and (b) that induced by S4(123,132); a Hamiltonian cycle in each graph

is in thick lines. (c) The graph @3 and, in thick lines, its restriction to F?E2). (d) @3, the square of the
cube, and in thick lines, its restriction to Cj3 5.

Here we show how the isomorphism ¢ allows us to construct efficient generating algorithms
for the lists defined in (4), (6) and (8).

Let b and b’ be two successive strings in B, defined by (3) and suppose that b and b’ differ
in position ¢. Dual-reflected order has the following consequence: either i = n or b;y; = 0.
Indeed, if b;1; = 1, then the string by ...b;0b;15...b, is larger than b and smaller than 4" in dual
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reflected order; so b’ is not the successor of b. This remark remains true if b and b’ are successive
strings in ]—)Sp). Now let next be a procedure which computes the position ¢« where a given string
b differs from its successor in the list ¥ = B,,_j or X = ]—'7579_)1. When X = B, _1, 7 is alternatively
n — 1 and the rightmost position in b with b;4.9 = 0. When X = ]—'7527_)1, next is a little more
complicated; it is given in [12]. The following algorithm results from the isomorphism ¢ and
generates the list S,,(123,132) when A = B,,_; and the list S,,(123,132,0,) when X = ]—'7579_)1.

e Initialize b to the first string in X" and 7 to ¢(b). The first string in B,,_; is 01772 and the
first one in F7)

o/, 1s given in [12].

e Run next. If b differs from its successor in A’ in position 7, then the successor of 7 in ¢(X)
is obtained by transposing the entries in position ¢ and ¢ + 1.

e Stop when the last string in X’ is reached. The last string in B,_; is 177! and in the case

of the list ]—'7529_)1 next detects its last string in constant time [12].

We now discuss the generation of S! ,(123,132) defined in (8), the image of C,_; 5 under
the function ¢. Let b = byby...b, be a l;inary string in C', ; which is not the last one in dual
reflected order. Suppose that b differs from its successor, in dual reflected order, in positions ¢
and 7, ¢ < j. Again, dual-reflected order has the following consequences: (1) either b;4; = 0
or biy1 = biyo = ... = b, =1 (in the latter case j = ¢ + 1), and (2) either j = n or b;41 =0
or bj41 = bj42 = ... = b, = 1. Let next be a procedure which computes the positions ¢ and
J where a given string b differs from its successor in C,,_y ;. Such a procedure can be obtained
by a direct implementation of definition (7) or by a slight modification of Liu-Tang algorithm
[13]. The following algorithm results from the considerations above and the isomorphism ¢; it
generates the list 5] , (123,132).

e Initialize b to 01¥07~*=2, the first string in Cn-1k, and 7 to ¢(b).
e Run next and let ¢ and j, ¢ < j, be the positions where b differs from its successor in
Crn—1,k-
— if b;31 = 0, then transpose 7; and m;41; else transpose m; and 7,
—if j=mn—1or bj4; =0, then transpose 7; and m;4;; else transpose 7; and 7.
e Stop when b = 1%077%=1 that is, when the last string in Cn—1,k is reached.

Each of the procedures next above has a constant-time implementation and so are the entire
generating algorithms.

6 Concluding Remarks

The bijections ¢ : B,_; — 5,(123,132), ¢ : F,_; — 5,(123,132,213), and ¢ : Cp_1p —
Spnk(123,132) are isomorphisms. Since the lists defined in (3), (5), and (7) are Gray codes, so
are their images under ¢, namely the lists defined by (4), (6), and (8). Tables 1 and 2 are the
above-mentioned Gray codes for n =5 (and with & = 2 in Table 2).

B, is a superset of F,, and C), ; also, S,(123,132) is a superset of 5,,(123,132,213) and of
S! .(123,132). Our choice of Gray codes (3), (5), and (7) induces some interested properties on
their images under ¢; the following are two of them.
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1. The restriction of the list B,_1 to the set F,_; (resp. Cj,_1 1) is exactly the list F,_; (resp.
Cn-1), or equivalently F,_; and C,_y ) are (scallered) sublists of B,_;. For instance,
deleting all elements of By having two consecutive 1s from the list in Table 1(a) produces
Fy in Table 1(b); similarly deleting all elements of B4 having no exactly two 1s from the
list in Table 1(a) produces C45 in Table 2.

2. The list §,(123,132,213) and S, , (123, 132) are (scattered) sublists of S,(123,132).

(»)

n—1

Finally, finding Gray codes for K
problem.

Acknowledgment. The authors thank the referees for a careful reading of the paper and
several helpful remarks.

or, equivalently, for S,,(123, 132, 0, T},) remains an open
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