Combinatorial Isomorphism Between Fibonacci Classes

Asep JUARNA*
Depok Mulya II Blok AF 19, Beji, Depok - 16421, INDONESIA
ajuarna@staff.gunadarma.ac.id
Vincent VAJNOVSZKI
LE2I - UMR CNRS, Université de Bourgogne B.P. 47 870, 21078 DIJON-Cedex FRANCE

vincent.vajnovszkiQubourgogne.fr

April 30, 2007

Abstract

In 1985 Simion and Schmidt showed that the set Sy, (T3) of length n permutations avoiding
the set of patterns T3 = {123, 132,213} is counted by (the second order) Fibonacci numbers.
They also presented a constructive bijection between the set Fj,_; of length (n — 1) binary
strings with no two consecutive 1s and S, (753).

In 2005, Egge and Mansour generalized the first Simion-Simion’s result and showed that
Sn(Tp), the set of permutations avoiding the patterns 7, = {12...p, 132,213}, is counted by
the (p — 1)th order Fibonacci numbers.

In this paper we extend the second Simion-Schmidt’s result by giving a bijection between

the set Frgp__ll) of length (n — 1) binary strings with no (p — 1) consecutive 1s, and the

set S, (Tp). Moreover, we show that this bijection is a combinatorial isomorphism, i.e., a
closeness-preserving bijection, by which we transform a known Gray code (or equivalently

Hamiltonian path) and exhaustive generating algorithm for F,(Lp__ll) into similar results for
Sn(Tp).

Keywords: Pattern avoiding permutations, generalized Fibonacci strings, Gray codes, com-
binatorial isomorphism.

1 Introduction and motivation

Let Sy be the set of all permutations of {1,2,...,¢}. Let # € S,, and 7 € Si, be two permutations,
k < n. We say that m contains 7 if there exists a subsequence 1 < iy < 19 < ... < 7 < n such
that (m;, ...m;, ) has all pairwise comparisons the same as 7, i.e., 7s < 7 whenever m;, < 7,
for 1 < s,t < k; in this context 7 is usually called a pattern. We say that 7 avoids 7, or is
T-avoiding, if such a subsequence does not exist. The set of all T-avoiding permutations in 5,
is denoted by S,,(7) and |S,(7)| is its cardinality. For an arbitrary finite collection of patterns
T, we say that = avoids T if © avoids each 7 € T'; the corresponding subset of 5, is denoted by
Sp(T) and |S,(T)| is its cardinality.

The systematic study of pattern avoiding permutations was initiated in 1985 when Simion
and Schmidt [8] considered every set of patterns in Ss; two of their propositions are:
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1. Forevery n > 1, |S,(13)| = fnt1, where T3 = {123, 132,213} and { f, },>0 is the Fibonacci
numbers, initialized by fo =0, f1 = 1.

2. For each n > 1, the following is a constructive bijection between F( )1 and the set S, (1%)
of binary strings of length (n — 1) having no two consecutive ones: Let b = b1by...b,_1 €
F,_1; its corresponding permutation = € S, (T5) is obtained by determining m; as follows:

={1,2,. }
for i=1to (n—1)
{ the largest element in X ) if b; = 0

the second largest element in X(®) if b; = 1

)= —{mi}
enddo,

7, is the unique element in X (%),

We denote this bijection by @3 : Fi,_1 — S,.(T5).
In 2005, Egge and Mansour [1] generalized the first proposition above and showed that for

all integers n and p > 2, |9,(T},)| = n]-)|-_1 ), where T), = {12...p, 132,213} and fép) is the n-th
Fibonacci number of p-th order (see Section 2 for a definition). This result is a particular case of
Mansour’s result [6] for the enumeration of S,, (7', 7) where T consists of two patterns of length
three and 7 € S, (7).

In the mainstream of the research on pattern-avoiding permutations there is no publication
on exhaustive generation nor Gray codes for such permutations, except one of our previous

paper [4]. In the present paper, by considering the Egge-Mansour’s result, we generalize the
second Simion-Schmidt’s proposition above and we give a bijection between Fép__ll) and S, (71},),

where Fép) is the set of length n binary strings with no p consecutive ones. We also show that
this bijection is a combinatorial isomorphism, i.e., a closeness-preserving bijection, by which we
construct a Gray code for the set S, (7},) which is the image of a known Gray code for F;f:l)
[9]. Finally, we give some graph theoretic and algorithmic considerations to illustrate how the
concept of combinatorial isomorphism able to translate some properties of its domain to the
codomain, and vice versa. A preliminary version of these results were presented in [3] while

another approach for a related problem is presented in [4].

2 Generalized Fibonacci Strings

A length n p-th order Fibonacci stringis a binary string of length n having no p consecutive 1s;
the set of such strings is denoted by F and it is defined by [9]:

{A} if n=0
FP) = {0,1} if n=1 (1)
0-FP ut0- FPyu..01p70- BP, if 0> 2

(»)

with p > 2 and X is the empty string; for an arbitrary binary string «, a - F;"’ denotes the

concatenation of a to every string in F{”) with the two following conventions: (1) « - Fﬁpl)

(»)

consists of a single element which is « after deleting its last bit, and (2) « - ) is the empty
set for ¢ > 1.



It is easy to show that,

[F) = 17, @)
where
P
flo) = anf_]. for m > 2, (3)
7=1

is the m-th Fibonacci number of p-th order with ft(p) =0fort <0 and fl(p) =1 for all p. It is
customary to omit the order p in both Fép) and fép) when p = 2.

3 Bijection g, : FTE]:U — Su(T})

The Simion-Schmidt bijection @3 : F,,_; — S,(13), described in the previous section, works
entry wise. For b = b1by...b,—1 € F,_1 let p3(b;) denote the i-th entry of ¢(b). It is easy to
show that 3 has the following properties:

(i) @3(b;) does not return the third largest element in X () so the patterns 123 and 132 are
avoided,

(ii) since b contains no two consecutive Is therefore there is no ¢ such that ¢s(b;) and ¢3(b;41)
are both the second largest elements of X() and X+ respectively; this ensures the
avoidance of the pattern 213.

By considering these properties of ¢3, we construct ¢, : Flt) Sp(Ty), where T, =

n—1
{12...p, 132,213}, such that ¢, does not return any subsequence containing:
i) 3-rd largest, largest, and 2-nd largest elements in order to avoid the pattern 132,
g g g
(i) 2-nd largest, 3-rd largest, and largest elements, in order to avoid the pattern 213,
iii) p consecutive increasing integers, in order to avoid the pattern 12...p, but at most (p—1
g g
such integers are allowed.

Such ¢, can be formulated as follows: For b = biby...b,—1 € Fép__ll) its corresponding
permutation 7 € S, (1)) is obtained by determining each 7; as:
XM ={1,2,... n};
fori=1to (n—1) do

the largest element in X ) if b; = 0
the 2-nd largest element in X® if b, =1 and (either bjy; =0ori=mn—1)
the 3-rd largest element in X if bi=by1=1

and (either bj1o =0or i =mn — 2)

=
the (p — 2)-th largest element in X if b; = by = ... = biyp g =1
and (either bj1,_3 =0o0ri=mn—p+3)
the (p — 1)-th largest element in X if b; = b4y = ... =b;4p 3 =1

X0 = X6 — {71
enddo;

T, is the unique element in X (?).



Proposition 1 ¢, : Fézi_ll) — S, (T),) is a constructive bijection.

Proof. This is a consequence of the three considerations above. Indeed, it is easy to verify that
@p is an injection while |F75p__11)| = féﬁ__ll) (see [1]) and |S,(1})| = fii_ll) (see [4]). ]
Example 1

o The bijection ¢4 maps 110001 € FéB) into (5674312) € S7(1}).
o The bijection s between Fé4) and S7(T5) maps 011101 into (7345612), and 011001 into
(7456312).

Figures 1 and 2 depict these two examples.

7(5)

7

Figure 1: The permutation (5674312) € S7(74) corresponding to the binary
string 110001 € F{,

(7)4 7' (7)

z z

Figure 2: 7 = (7345612) and 7’ = (7456312) in S7(75) are the images of

011101 and 011001 in Fé4), respectively. 7’ is obtained from 7 by trans-
posing the left block 3 with the right block 456 in 7.

4 Combinatorial isomorphism ¢,

In a permutation, we define a left block as a sequence of increasing consecutive integers which
can not be extended on the left. For instance, consider the permutation 7 = 56734128 € Ss.
The sequences 56, 567, 34, 12, and 8 in 7 are left blocks. Notice that 67 is not a left block since
it can be extended on the left as 567. Right block is defined similarly. Also notice that 8 is at
the same time a left block and a right block.



Definition 1

1. Two permutations in S, (1},) are close if one is obtained from the other by a transposition
of two adjacent blocks of total length less than p, one a left block and the other a right;

2. Two binary strings are close if they differ in a single position!).

Example 2 The permutations © = (7345612) and 7' = (7456312) in S7(T5) are close since 7'
s obtained from w by transposing the right block 456 with the left block 3 in w; see Figure 2.

Theorem 1 The bijection ¢, is a combinatorial isomorphism, that is, lwo binary strings in

F;f:l) are close if and only if their images under this bijection are close in S, (T,).

Proof. Let b, € Fézi_ll) which differ just in position i, like the following scheme:

b= by a0 L 3biL 10 e o
W= bbb 1 1b 10 b b (4)
102 ...0¢_9 L. utl - O0n_1

1—t u—1i—1

where b;...b;_y and b;4q ...b,—1 are, possibly empty, contiguous sequences of 1s and b} = 1 —b;.
Without any loss of generality suppose b; = 1 (and therefore b, = 0) and in this case u — ¢ (the
length of contiguous sequence of 1s , including b;, in b) is less than or equal to p — 1. The shape
of m and 7', the images of b and b’ through the bijection ¢, are:

T = T 1T T 1T T4 e s Ty M1 e e - (5)

! _ ! ! 1.1 !
T = AT T T e T Tyl e e

Note that m;...m;...m, is at once a left and a right block in 7 and so are 7}...7! and

Tipq--Ty, in 7. Since {ms,...,m, ..., m} and {m,..., 7}, ..., 7} are equal (as sets, but

different as sequences) and w) < 7 (actually 7! = 77 — 1) we have my...mmipy ... 7, =
! ! !

LT o S o

5 Gray code for S,(7,)

In this section we show how a combinatorial isomorphism transforms a known Gray code for
Fibonacci strings into a Gray code for the set of permutations S, (7}).

By definition, a Gray code for a combinatorial family is a listing of objects in the family such
that successive objects differ in some pre-specified, usually small, way [2]. In [9] a Gray code
list for the set of Fibonacci strings defined by (1) is given. In this list successive strings differ in
a single position and its definition is:

A if n=0
fép) = 0,1 if n=1 (6)
0.7 010 FP, 0. 01710 F it n>1

DSee [7, pp.116] for general setting on closeness relations.



Table 1: (a) The list ]:5(2) and its image S¢(13) = Se(123,132,213), and
(b) The list fig) and its image S5(74) = S5(1234,132,213) together with
the Hamming distances between consecutive permutations. Note that the
Hamming distance between any two consecutive elements of Sg(173) is two.
() (b)
]_.éz) Ss(T5) ]—‘ig) S5(Ty) distance
01001 645312 | 0110 52341
01000 645321 | 0100 53421
01010 645231 | 0101 53412
00010 654231 | 0001 54312
00000 654321 | 0000 54321
00001 654312 | 0010 54231
00101 653412 | 0011 54123
00100 653421 | 1011 45123
10100 563421 | 1010 45231
10101 563412 | 1000 45321
10001 564312 | 1001 45312
10000 564321 | 1101 34512
10010 564231 | 1100 34521

BN QO BN W W NN W

where o is the operator of concatenation of two lists, F is the list obtained by reversing F, and
with two conventions: (1) the list « - ]:Epl) consists of the single string list obtained from « by
deleting its last bit, and (2) ]:Ept) is the empty list for ¢ > 1.

By applying the combinatorial isomorphism ¢, to each binary string in the list ]—)Sp) one
obtains a list for the set S, 41(Tp+1); or equivalently, by the combinatorial isomorphism ¢,, the

Gray code ]—'T(Lp__ll) is transformed into the list S,,(7},) for the set S,,(1},) defined by:

(1) if n=1
(21), (12) it n=2

Snl(Ty) = n-Sp1(Ty)o(n—1n-S,—2(T,)o... 0
on—p+2)...nSp_pt1(1p) it n>2

with the conventions: (1) the list a - Sy(7}) = o, and (2) S_4(7},) is the empty list for ¢ > 0.
Table 1 shows the lists ]:5(2) and ff’) with their images Sg(753) and S5(14), respectively.

Since any two consecutive strings in }-7579_—11) are close, by Theorem 1, so are their images
through the combinatorial isomorphism ¢,, hence the Hamming distance between consecutive
permutations in S,,(7},) is less than p. The following lemma formalizes this result using a different
approach from Theorem 1.

Lemma 1 The Hamming distance between any two consecutive elements of S, (T,) is upper
bounded by the minimum between (p — 1) and n.

Proof. We consider p fixed. Obviously, the Hamming distance between two consecutive elements



in S,,(7T},) is less than or equal to n. Suppose n > p and let
(n—k)n—k+1)...n-S__1(T}) (8)

and B
(m—k—-1)(n—k)...n-Sp_k—2(Tp) (9)
be two (not empty) consecutive sublists in the definition (7), for n > 2, with 0 < k <p—3. We

show that the Hamming distance between the last element in the list (8) and the first one in (9)
is less than p.

last (n —k)(n =k +1)...n-Sn-p-1(Tp))
=(n—-k)(n—k+1)...n-last(S,_j_ 1)(Tp)
=(n—k)(n—k+1)...n first(Sn—p—1)(Tp)
=(n=k)(n—k+1)..n(n— k1) first(Su-r-a(Ty)).

So, the last element in the list defined by (8) differs from the first element in the list defined
by (9) in exactly &+ 2 < p — 1 positions. Induction on n completes the proof. O

The following remark is useful for the generating algorithm sketched in the last section.

Remark 1 Let b and b’ be two binary strings in the list ]igp__ll) with b’ the successor of b and 7
and ©' their images by bijection p, as in schemes (4) and (5). If b differs from b in position i

then either i =n — 1 or biyy = b, = 0, see [9]. With the notations in the proof of Theorem 1

e ifb;, =0 then 7’ is obtained from w by transposing the block 7y ...7; (witht =1 ifi =1 or
b;_1 = 0) with the single element block m;41,

o if b; = 1 then ©' is oblained from w by transposing the single element block m; with the
block miy1 ... Tiy1.

See Figure 2.

Note that when p = 3 consecutive permutations in S, (75) differ by the transposition of two
adjacent elements; see Table 1(a).

6 Graph theoretic and algorithmic considerations

The isomorphism shown by Theorem 1 also has a graph theoretical meaning. Let X be a class of
combinatorial objects and G'(X) be the graph induced by X, i.e., the graph with vertex set X,
and edges connecting close vertices. With this terminology, a Gray code for X is a Hamiltonian

path for G(X).
Theorem 1 implies that the bijection ¢, is a graph isomorphism between G(F(p

n—1
G(S,(T))); this isomorphism transforms the Hamiltonian path ]—'75]7__11) defined by (6) into the
Hamiltonian path S,,(7},) defined by (7). Figure 3 shows the graphs G(Ff')) and G(S5(Ty))

where the Hamiltonian paths ]—:i ) and S5(T4) are in bold.
Now, we explain how a slight modification of an efficient exhaustive generation algorithm

_1))

and

for the list ]—'7579__11) transforms it into a similar algorithm for S,(7,). In [9] is presented the

-~



0110

0100 0101 1100 1101
e —
0010 0011 1010 1011
0000
0001 1000 1001
3
G (F)
52341
53421 / 53412 34521 34512
| —
54231 54123 45231 45123
54321
54321 45321 45312
G (S5(T4))

Figure 3: The isomorphic graphs Ff’) and S5(74). Two vertices in Ff’) are

connected if their Hamming distance is one, while two vertices in S5(T4) are
connected if one is obtained from the other by transposing two adjacent blocks
of size at most three. Bold lines are the Hamiltonian paths listed in Table 1 (b).

loopless procedure nexzt which after a linear-time precomputation step (and using additional
data structures) computes, in constant time, the position ¢ where the current string belonging
to ]—'7279__11) must be changed in order to obtain the next one. next subsequently computes the
length of the contiguous sequence of 1s ending in position ¢ — 1 (that is, ¢ — ¢ with the notations
in the proof of Theorem 1).

The following scheme yields a generating algorithm for S,,(7},). Initialize b by the first string

in ]_.7519_—11) as in [9] and 7 by its image through the bijection ¢,; then, run nexzt and update 7 as
in Remark 1. The time complexity of the obtained algorithm is given by the second step—the
blocks transposition— and it is O(p) per permutation, independent of n. A linked representation
for 7 can reduce this complexity to O(1); see [5] for a detailed explanation of this technique.
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