Combinatorial Isomorphism Between Fibonacci Classes

Asep JUARNA*
Depok Mulya II Blok AF 19, Beji, Depok - 16421, INDONESIA
ajuarna@staff.gunadarma.ac.id
Vincent VAJNOVSZKI

LE2I - UMR CNRS, Université de Bourgogne B.P. 47 870, 21078 DIJON-Cedex FRANCE vincent.vajnovszki@ubourgogne.fr

April 30, 2007

Abstract

In 1985 Simion and Schmidt showed that the set $S_n(T_3)$ of length n permutations avoiding the set of patterns $T_3 = \{123, 132, 213\}$ is counted by (the second order) Fibonacci numbers. They also presented a constructive bijection between the set F_{n-1} of length (n-1) binary strings with no two consecutive 1s and $S_n(T_3)$.

In 2005, Egge and Mansour generalized the first Simion-Simion's result and showed that $S_n(T_p)$, the set of permutations avoiding the patterns $T_p = \{12 \dots p, 132, 213\}$, is counted by the (p-1)th order Fibonacci numbers.

In this paper we extend the second Simion-Schmidt's result by giving a bijection between the set $F_{n-1}^{(p-1)}$ of length (n-1) binary strings with no (p-1) consecutive 1s, and the set $S_n(T_p)$. Moreover, we show that this bijection is a combinatorial isomorphism, i.e., a closeness-preserving bijection, by which we transform a known Gray code (or equivalently Hamiltonian path) and exhaustive generating algorithm for $F_{n-1}^{(p-1)}$ into similar results for $S_n(T_p)$.

Keywords: Pattern avoiding permutations, generalized Fibonacci strings, Gray codes, combinatorial isomorphism.

1 Introduction and motivation

Let S_{ℓ} be the set of all permutations of $\{1, 2, ..., \ell\}$. Let $\pi \in S_n$ and $\tau \in S_k$ be two permutations, $k \leq n$. We say that π contains τ if there exists a subsequence $1 \leq i_1 < i_2 < ... < i_k \leq n$ such that $(\pi_{i_1} ... \pi_{i_k})$ has all pairwise comparisons the same as τ , i.e., $\tau_s < \tau_t$ whenever $\pi_{i_s} < \pi_{i_t}$ for $1 \leq s, t \leq k$; in this context τ is usually called a pattern. We say that π avoids τ , or is τ -avoiding, if such a subsequence does not exist. The set of all τ -avoiding permutations in S_n is denoted by $S_n(\tau)$ and $|S_n(\tau)|$ is its cardinality. For an arbitrary finite collection of patterns T, we say that π avoids T if T avoids each T is the corresponding subset of T is denoted by T and T and T is its cardinality.

The systematic study of pattern avoiding permutations was initiated in 1985 when Simion and Schmidt [8] considered every set of patterns in S_3 ; two of their propositions are:

^{*}corresponding author.

- 1. For every $n \ge 1$, $|S_n(T_3)| = f_{n+1}$, where $T_3 = \{123, 132, 213\}$ and $\{f_n\}_{n \ge 0}$ is the Fibonacci numbers, initialized by $f_0 = 0$, $f_1 = 1$.
- 2. For each $n \ge 1$, the following is a constructive bijection between $F_{n-1}^{(2)}$ and the set $S_n(T_3)$ of binary strings of length (n-1) having no two consecutive ones: Let $b = b_1 b_2 \dots b_{n-1} \in F_{n-1}$; its corresponding permutation $\pi \in S_n(T_3)$ is obtained by determining π_i as follows:

$$\begin{split} X^{(1)} &= \{1,2,\ldots,n\};\\ \textbf{for } i &= 1 \textbf{ to } (n-1) \textbf{ do} \\ \pi_i &= \left\{ \begin{array}{l} \text{the largest element in } X^{(i)} \text{ if } b_i = 0 \\ \text{the second largest element in } X^{(i)} \text{ if } b_i = 1 \end{array} \right. \\ X^{(i+1)} &= X^{(i)} - \{\pi_i\};\\ \textbf{enddo};\\ \pi_n \text{ is the unique element in } X^{(n)}. \end{split}$$

We denote this bijection by $\varphi_3: F_{n-1} \to S_n(T_3)$.

In 2005, Egge and Mansour [1] generalized the first proposition above and showed that for all integers n and $p \geq 2$, $|S_n(T_p)| = f_{n+1}^{(p-1)}$, where $T_p = \{12 \dots p, 132, 213\}$ and $f_n^{(p)}$ is the n-th Fibonacci number of p-th order (see Section 2 for a definition). This result is a particular case of Mansour's result [6] for the enumeration of $S_n(T,\tau)$ where T consists of two patterns of length three and $\tau \in S_p(T)$.

In the mainstream of the research on pattern-avoiding permutations there is no publication on exhaustive generation nor Gray codes for such permutations, except one of our previous paper [4]. In the present paper, by considering the Egge-Mansour's result, we generalize the second Simion-Schmidt's proposition above and we give a bijection between $F_{n-1}^{(p-1)}$ and $S_n(T_p)$, where $F_n^{(p)}$ is the set of length n binary strings with no p consecutive ones. We also show that this bijection is a combinatorial isomorphism, i.e., a closeness-preserving bijection, by which we construct a Gray code for the set $S_n(T_p)$ which is the image of a known Gray code for $F_{n-1}^{(p-1)}$ [9]. Finally, we give some graph theoretic and algorithmic considerations to illustrate how the concept of combinatorial isomorphism able to translate some properties of its domain to the codomain, and vice versa. A preliminary version of these results were presented in [3] while another approach for a related problem is presented in [4].

2 Generalized Fibonacci Strings

A length n p-th order Fibonacci string is a binary string of length n having no p consecutive 1s; the set of such strings is denoted by $F_n^{(p)}$ and it is defined by [9]:

$$F_n^{(p)} = \begin{cases} \{\lambda\} & \text{if } n = 0\\ \{0, 1\} & \text{if } n = 1\\ 0 \cdot F_{n-1}^{(p)} \cup 10 \cdot F_{n-2}^{(p)} \cup \dots \cup 1^{p-1} 0 \cdot F_{n-p}^{(p)} & \text{if } n \ge 2 \end{cases}$$
 (1)

with $p \geq 2$ and λ is the empty string; for an arbitrary binary string α , $\alpha \cdot F_n^{(p)}$ denotes the concatenation of α to every string in $F_n^{(p)}$ with the two following conventions: (1) $\alpha \cdot F_{-1}^{(p)}$ consists of a single element which is α after deleting its last bit, and (2) $\alpha \cdot F_{-t}^{(p)}$ is the empty set for t > 1.

It is easy to show that,

$$|F_n^{(p)}| = f_{n+2}^{(p)} \tag{2}$$

where

$$f_m^{(p)} = \sum_{j=1}^p f_{m-j}^{(p)}$$
 for $m \ge 2$, (3)

is the *m*-th Fibonacci number of *p*-th order with $f_t^{(p)}=0$ for $t\leq 0$ and $f_1^{(p)}=1$ for all *p*. It is customary to omit the order *p* in both $F_n^{(p)}$ and $f_n^{(p)}$ when p=2.

3 Bijection $\varphi_p: F_{n-1}^{(p-1)} \to S_n(T_p)$

The Simion-Schmidt bijection $\varphi_3: F_{n-1} \to S_n(T_3)$, described in the previous section, works entry wise. For $b = b_1 b_2 \dots b_{n-1} \in F_{n-1}$ let $\varphi_3(b_i)$ denote the *i*-th entry of $\varphi(b)$. It is easy to show that φ_3 has the following properties:

- (i) $\varphi_3(b_i)$ does not return the third largest element in $X^{(i)}$ so the patterns 123 and 132 are avoided,
- (ii) since b contains no two consecutive 1s therefore there is no i such that $\varphi_3(b_i)$ and $\varphi_3(b_{i+1})$ are both the second largest elements of $X^{(i)}$ and $X^{(i+1)}$, respectively; this ensures the avoidance of the pattern 213.

By considering these properties of φ_3 , we construct $\varphi_p: F_{n-1}^{(p-1)} \to S_n(T_p)$, where $T_p = \{12 \dots p, 132, 213\}$, such that φ_p does not return any subsequence containing:

- (i) 3-rd largest, largest, and 2-nd largest elements in order to avoid the pattern 132,
- (ii) 2-nd largest, 3-rd largest, and largest elements, in order to avoid the pattern 213,
- (iii) p consecutive increasing integers, in order to avoid the pattern 12...p, but at most (p-1) such integers are allowed.

Such φ_p can be formulated as follows: For $b = b_1 b_2 \dots b_{n-1} \in F_{n-1}^{(p-1)}$ its corresponding permutation $\pi \in S_n(T_p)$ is obtained by determining each π_i as: $X^{(1)} = \{1, 2, \dots, n\}$;

for
$$i = 1$$
 to $(n - 1)$ do

$$\pi_i = \begin{cases} \text{ the largest element in } X^{(i)} \text{ if } b_i = 0 \\ \text{the 2-nd largest element in } X^{(i)} \text{ if } b_i = 1 \text{ and (either } b_{i+1} = 0 \text{ or } i = n-1) \\ \text{the 3-rd largest element in } X^{(i)} \text{ if } b_i = b_{i+1} = 1 \\ \text{and (either } b_{i+2} = 0 \text{ or } i = n-2) \\ \vdots \\ \text{the } (p-2)\text{-th largest element in } X^{(i)} \text{ if } b_i = b_{i+1} = \ldots = b_{i+p-4} = 1 \\ \text{and (either } b_{i+p-3} = 0 \text{ or } i = n-p+3) \\ \text{the } (p-1)\text{-th largest element in } X^{(i)} \text{ if } b_i = b_{i+1} = \ldots = b_{i+p-3} = 1 \end{cases}$$

$$X^{(i+1)} = X^{(i)} - \{\pi_i\};$$

enddo;

 π_n is the unique element in $X^{(n)}$.

Proposition 1 $\varphi_p: F_{n-1}^{(p-1)} \to S_n(T_p)$ is a constructive bijection.

Proof. This is a consequence of the three considerations above. Indeed, it is easy to verify that φ_p is an injection while $|F_{n-1}^{(p-1)}| = f_{n+1}^{(p-1)}$ (see [1]) and $|S_n(T_p)| = f_{n+1}^{(p-1)}$ (see [4]).

Example 1

- The bijection φ₄ maps 110001 ∈ F₆⁽³⁾ into (5674312) ∈ S₇(T₄).
 The bijection φ₅ between F₆⁽⁴⁾ and S₇(T₅) maps 011101 into (7345612), and 011001 into

Figures 1 and 2 depict these two examples.

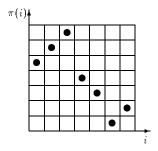


Figure 1: The permutation $(5674312) \in S_7(T_4)$ corresponding to the binary string $110001 \in F_6^{(3)}$.

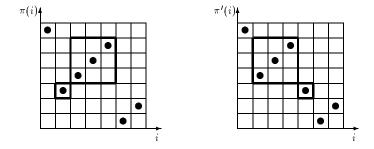


Figure 2: $\pi = (7345612)$ and $\pi' = (7456312)$ in $S_7(T_5)$ are the images of 011101 and 011001 in $F_6^{(4)}$, respectively. π' is obtained from π by transposing the left block 3 with the right block 456 in π .

Combinatorial isomorphism φ_p

In a permutation, we define a left block as a sequence of increasing consecutive integers which can not be extended on the left. For instance, consider the permutation $\pi = 56734128 \in S_8$. The sequences 56, 567, 34, 12, and 8 in π are left blocks. Notice that 67 is not a left block since it can be extended on the left as 567. Right block is defined similarly. Also notice that 8 is at the same time a left block and a right block.

Definition 1

- 1. Two permutations in $S_n(T_p)$ are close if one is obtained from the other by a transposition of two adjacent blocks of total length less than p, one a left block and the other a right;
- 2. Two binary strings are close if they differ in a single position 1 .

Example 2 The permutations $\pi = (7\underline{3}\,\underline{456}12)$ and $\pi' = (7\underline{456}\,\underline{3}12)$ in $S_7(T_5)$ are close since π' is obtained from π by transposing the right block 456 with the left block 3 in π ; see Figure 2.

Theorem 1 The bijection φ_p is a combinatorial isomorphism, that is, two binary strings in $F_{n-1}^{(p-1)}$ are close if and only if their images under this bijection are close in $S_n(T_p)$.

Proof. Let $b, b' \in F_{n-1}^{(p-1)}$ which differ just in position i, like the following scheme:

$$b = b_1 b_2 \dots b_{t-2} 0 \quad \underbrace{1 \dots 1}_{i-t} b_i \underbrace{1 \dots 1}_{u-i-1} 0 \quad b_{u+1} \dots b_{n-1}$$

$$b' = b_1 b_2 \dots b_{t-2} 0 \quad \underbrace{1 \dots 1}_{i-t} b'_i \underbrace{1 \dots 1}_{u-i-1} 0 \quad b_{u+1} \dots b_{n-1}$$

$$(4)$$

where $b_t ldots b_{i-1}$ and $b_{i+1} ldots b_{u-1}$ are, possibly empty, contiguous sequences of 1s and $b'_i = 1 - b_i$. Without any loss of generality suppose $b_i = 1$ (and therefore $b'_i = 0$) and in this case u - t (the length of contiguous sequence of 1s, including b_i , in b) is less than or equal to p - 1. The shape of π and π' , the images of b and b' through the bijection φ_p , are:

$$\pi = \dots \pi_{t-1} \pi_t \dots \pi_{i-1} \pi_i \pi_{i+1} \dots \pi_u \pi_{u+1} \dots
\pi' = \dots \pi_{t-1} \pi'_t \dots \pi'_{i-1} \pi'_i \pi'_{i+1} \dots \pi'_u \pi_{u+1} \dots$$
(5)

Note that $\pi_t \dots \pi_i \dots \pi_u$ is at once a left and a right block in π and so are $\pi'_t \dots \pi'_i$ and $\pi'_{i+1} \dots \pi'_u$ in π' . Since $\{\pi_t, \dots, \pi_i, \dots, \pi_u\}$ and $\{\pi'_t, \dots, \pi'_i, \dots, \pi'_u\}$ are equal (as sets, but different as sequences) and $\pi'_u < \pi'_t$ (actually $\pi'_u = \pi'_t - 1$) we have $\pi_t \dots \pi_i \pi_{i+1} \dots \pi_u = \pi'_{i+1} \dots \pi'_u \pi'_t \dots \pi'_i$.

5 Gray code for $S_n(T_p)$

In this section we show how a combinatorial isomorphism transforms a known Gray code for Fibonacci strings into a Gray code for the set of permutations $S_n(T_p)$.

By definition, a Gray code for a combinatorial family is a listing of objects in the family such that successive objects differ in some pre-specified, usually small, way [2]. In [9] a Gray code list for the set of Fibonacci strings defined by (1) is given. In this list successive strings differ in a single position and its definition is:

$$\mathcal{F}_{n}^{(p)} = \begin{cases}
\lambda & \text{if } n = 0 \\
0, 1 & \text{if } n = 1 \\
0 \cdot \overline{\mathcal{F}}_{n-1}^{(p)} \circ 10 \cdot \overline{\mathcal{F}}_{n-2}^{(p)} \circ \dots \circ 1^{p-1} 0 \cdot \overline{\mathcal{F}}_{n-p}^{(p)} & \text{if } n > 1
\end{cases}$$
(6)

 $^{^{1)}\}mathrm{See}$ [7, pp.116] for general setting on closeness relations.

Table 1: (a) The list $\mathcal{F}_{5}^{(2)}$ and its image $\mathcal{S}_{6}(T_{3}) = \mathcal{S}_{6}(123, 132, 213)$, and (b) The list $\mathcal{F}_4^{(3)}$ and its image $\mathcal{S}_5(T_4) = \mathcal{S}_5(1234, 132, 213)$ together with the Hamming distances between consecutive permutations. Note that the Hamming distance between any two consecutive elements of $S_6(T_3)$ is two.

(a)		(b)		
$\mathcal{F}_5^{(2)}$	$\mathcal{S}_6(T_3)$	$\mathcal{F}_4^{(3)}$	${\mathcal S}_5(T_4)$	distance
01001	645312	0110	52341	
01000	645321	0100	53421	3
01010	645231	0101	53412	2
00010	654231	0001	54312	2
00000	654321	0000	54321	2
00001	654312	0010	54231	2
00101	653412	0011	54123	3
00100	653421	1011	45123	2
10100	563421	1010	45231	3
10101	563412	1000	45321	2
10001	564312	1001	45312	2
10000	564321	1101	34512	3
10010	564231	1100	34521	2

where \circ is the operator of concatenation of two lists, $\overline{\mathcal{F}}$ is the list obtained by reversing \mathcal{F} , and with two conventions: (1) the list $\alpha \cdot \mathcal{F}_{-1}^{(p)}$ consists of the single string list obtained from α by deleting its last bit, and (2) $\mathcal{F}_{-t}^{(p)}$ is the empty list for t > 1.

By applying the combinatorial isomorphism φ_p to each binary string in the list $\mathcal{F}_n^{(p)}$ one obtains a list for the set $S_{n+1}(T_{p+1})$; or equivalently, by the combinatorial isomorphism φ_p , the Gray code $\mathcal{F}_{n-1}^{(p-1)}$ is transformed into the list $\mathcal{S}_n(T_p)$ for the set $S_n(T_p)$ defined by:

$$S_{n}(T_{p}) = \begin{cases} (1) & \text{if } n = 1\\ (21), (12) & \text{if } n = 2\\ n \cdot \overline{S}_{n-1}(T_{p}) \circ (n-1)n \cdot \overline{S}_{n-2}(T_{p}) \circ \dots \\ \circ (n-p+2) \dots n \cdot \overline{S}_{n-p+1}(T_{p}) & \text{if } n > 2 \end{cases}$$
(7)

with the conventions: (1) the list $\alpha \cdot \mathcal{S}_0(T_p) = \alpha$, and (2) $\mathcal{S}_{-t}(T_p)$ is the empty list for t > 0.

Table 1 shows the lists $\mathcal{F}_5^{(2)}$ and $\mathcal{F}_4^{(3)}$ with their images $\mathcal{S}_6(T_3)$ and $\mathcal{S}_5(T_4)$, respectively. Since any two consecutive strings in $\mathcal{F}_{n-1}^{(p-1)}$ are close, by Theorem 1, so are their images through the combinatorial isomorphism φ_p , hence the Hamming distance between consecutive permutations in $S_n(T_p)$ is less than p. The following lemma formalizes this result using a different approach from Theorem 1.

Lemma 1 The Hamming distance between any two consecutive elements of $\mathcal{S}_n(T_n)$ is upper bounded by the minimum between (p-1) and n.

Proof. We consider p fixed. Obviously, the Hamming distance between two consecutive elements

in $S_n(T_p)$ is less than or equal to n. Suppose $n \geq p$ and let

$$(n-k)(n-k+1)\dots n\cdot \overline{\mathcal{S}}_{n-k-1}(T_p) \tag{8}$$

and

$$(n-k-1)(n-k)\dots n \cdot \overline{S}_{n-k-2}(T_n) \tag{9}$$

be two (not empty) consecutive sublists in the definition (7), for n > 2, with $0 \le k \le p - 3$. We show that the Hamming distance between the last element in the list (8) and the first one in (9) is less than p.

$$last ((n-k)(n-k+1) \dots n \cdot \overline{S}_{n-k-1}(T_p))$$

$$= (n-k)(n-k+1) \dots n \cdot last(\overline{S}_{n-k-1})(T_p)$$

$$= (n-k)(n-k+1) \dots n \cdot first(S_{n-k-1})(T_p)$$

$$= (n-k)(n-k+1) \dots n(n-k-1) \cdot first(\overline{S}_{n-k-2}(T_p)).$$

So, the last element in the list defined by (8) differs from the first element in the list defined by (9) in exactly $k + 2 \le p - 1$ positions. Induction on n completes the proof.

The following remark is useful for the generating algorithm sketched in the last section.

Remark 1 Let b and b' be two binary strings in the list $\mathcal{F}_{n-1}^{(p-1)}$ with b' the successor of b and π and π' their images by bijection φ_p as in schemes (4) and (5). If b differs from b' in position i then either i = n - 1 or $b_{i+1} = b'_{i+1} = 0$, see [9]. With the notations in the proof of Theorem 1

- if $b_i = 0$ then π' is obtained from π by transposing the block $\pi_t \dots \pi_i$ (with t = i if i = 1 or $b_{i-1} = 0$) with the single element block π_{i+1} ,
- if $b_i = 1$ then π' is obtained from π by transposing the single element block π_t with the block $\pi_{t+1} \dots \pi_{i+1}$.

See Figure 2.

Note that when p=3 consecutive permutations in $S_n(T_3)$ differ by the transposition of two adjacent elements; see Table 1(a).

6 Graph theoretic and algorithmic considerations

The isomorphism shown by Theorem 1 also has a graph theoretical meaning. Let X be a class of combinatorial objects and G(X) be the graph induced by X, i.e., the graph with vertex set X, and edges connecting *close* vertices. With this terminology, a Gray code for X is a Hamiltonian path for G(X).

Theorem 1 implies that the bijection φ_p is a graph isomorphism between $G(F_{n-1}^{(p-1)})$ and $G(S_n(T_p))$; this isomorphism transforms the Hamiltonian path $\mathcal{F}_{n-1}^{(p-1)}$ defined by (6) into the Hamiltonian path $\mathcal{S}_n(T_p)$ defined by (7). Figure 3 shows the graphs $G(F_4^{(3)})$ and $G(S_5(T_4))$ where the Hamiltonian paths $\mathcal{F}_4^{(3)}$ and $\mathcal{S}_5(T_4)$ are in bold.

Now, we explain how a slight modification of an efficient exhaustive generation algorithm

Now, we explain how a slight modification of an efficient exhaustive generation algorithm for the list $\mathcal{F}_{n-1}^{(p-1)}$ transforms it into a similar algorithm for $\mathcal{S}_n(T_p)$. In [9] is presented the

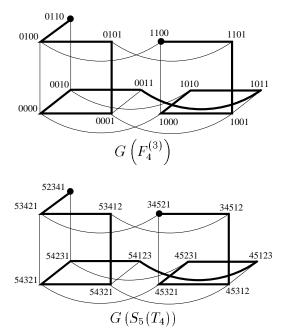


Figure 3: The isomorphic graphs $F_4^{(3)}$ and $S_5(T_4)$. Two vertices in $F_4^{(3)}$ are connected if their Hamming distance is one, while two vertices in $S_5(T_4)$ are connected if one is obtained from the other by transposing two adjacent blocks of size at most three. Bold lines are the Hamiltonian paths listed in Table 1 (b).

loopless procedure next which after a linear-time precomputation step (and using additional data structures) computes, in constant time, the position i where the current string belonging to $\mathcal{F}_{n-1}^{(p-1)}$ must be changed in order to obtain the next one. next subsequently computes the length of the contiguous sequence of 1s ending in position i-1 (that is, i-t with the notations in the proof of Theorem 1).

The following scheme yields a generating algorithm for $S_n(T_p)$. Initialize b by the first string in $\mathcal{F}_{n-1}^{(p-1)}$ as in [9] and π by its image through the bijection φ_p ; then, run next and update π as in Remark 1. The time complexity of the obtained algorithm is given by the second step—the blocks transposition— and it is O(p) per permutation, independent of n. A linked representation for π can reduce this complexity to O(1); see [5] for a detailed explanation of this technique.

References

- [1] E.S. Egge and T. Mansour. Restricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers. Integers: Electronic Journal of Cominatorial Number Theory 5(1): 12pp, 2005.
- [2] J.T. Joichi, D.E. White, and S.G. Williamson. *Combinatorial Gray Codes*. SIAM Journal on Computing, **9**(1): 130-141, 1980.
- [3] A. Juarna and V. Vajnovszki. *Isomorphism Between Classes Counted by Fibonacci Numbers*. Proceeding of Words 2005: 51-62, Montreal-Canada, September 2005.

- [4] A. Juarna and V. Vajnovszki. Combinatorial isomorphisms beyond a Simion-Schmidt's bijection. Proceeding of CANT 2006: 11pp, Liège-Belgique, May 2006.
- [5] J.F. Korsh and S. Lipschutz. Generating multiset permutations in constant time. J. Algorithms, 25(1): 321-335, 1997.
- [6] T. Mansour. Permutations avoiding pattern from S_k and at least two patterns from S_3 . Ars Combinatorica **62**: 227-239, 2001.
- [7] F. Ruskey. Combinatorial Generation, textbook for CSC-425/520 Univ. Victoria. (Available at http://www.1stworks.com/ref/RuskeyCombGen.pdf)
- [8] R. Simion and F.W. Schmidt. *Restricted Permutations*. Europ. J. Combinatorics, **6**: 383-406, 1985.
- [9] V. Vajnovszki. A Loopless Generation of Bitstring without p Consecutive Ones. Proceeding of 3-rd Discrete Mathematics and Theoretical Computer Science, 227-239, 2001.