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Viale Morgagni 65, 50134 Firenze, Italy

e-mail: barcucci@dsi.unifi.it

Vincent Vajnovszki

LE2I, Université de Bourgogne
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Abstract

We give the generating function for the integer sequence enumerating a class of pattern
avoiding permutations depending on two parameters: m and p. The avoided patterns are the
permutations of length m with the largest element in the first position and the second largest
in one of the last p positions. For particular instances of m and p we obtain pattern avoiding
classes enumerated by Schröder, Catalan and central binomial coefficient numbers, and thus,
the obtained two-parameter generating function gathers known generating functions under
one roof and expresses new ones. This work generalizes some earlier results of Barcucci et
al. (2000) and Kremer (2000, 2003).

1 Introduction

Pattern avoiding permutations have become a very active research area mainly since the first
systematic study published by Simion and Schmidt in 1985 [1]. This is in part due to many
restricted classes of permutations being in bijection with well-known combinatorial structures,
and so, their study allows to re-express known results in terms of pattern avoidance and state
new ones. In this paper we present a two-parameter generating function for generalized Schröder
permutations, which simultaneously generalize permutation classes counted by Schröder, Catalan
and central binomial coefficient numbers. A few particular instances of this generating function
correspond to known integer sequences, some of them not previously related to permutation
classes, see Table 1.

Let Sn be the set of length n permutations. For two permutations σ ∈ Sk and π ∈ Sn we
say that π avoids σ if there is no sequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1πi2 . . . πik

is order-isomorphic to σ. In this context σ is called pattern and for a set of patterns A, Sn(A)
denotes the set of permutations in Sn avoiding each pattern in A, and S(A) = ∪∞

n=0Sn(A).
For an integer m ≥ 2, define Γm ⊂ Sm by

Γm = {σ ∈ Sm | σ(m − 1) = m − 1 and σ(m) = m}.
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In other words, Γm is the set of length m permutations with fixed points in the last and last
but one position.

Example 1.

• Γ3 = {123} and so card(Sn(Γ3)) = cn, the nth Catalan number,

• Γ4 = {1234, 2134} and so card(Sn(Γ4)) = rn, the nth Schröder number.

In [2] Barcucci et al. gave a multivariate generating function for the set of permutations
in S(Γm) with the parameters: length, left minima and non-inversions. In particular, the
generating function of the sequence {card(Sn(Γm))}n≥0 is

m−3
∑

i=1

i!xi + xm−4(m − 3)!
1 − (m − 1)x −

√

1 − 2(m − 1)x + (m − 3)2x2

2
. (1)

For three integers 1 ≤ s, t ≤ m, s 6= t, define Γm;s,t ⊂ Sm by

Γm;s,t = {σ ∈ Sm | σ(s) = m − 1 and σ(t) = m}

and, in particular, Γm;m−1,m = Γm. In [5, 6] Kremer gave the following result.

Theorem 1 ([5, 6]). With the notation above, for |s − t| ≤ 2, or t ∈ {1,m} the cardinality of
Sn(Γm;s,t) does not depend on s and t.

This theorem implies that, under the above conditions on s and t, the generating function
of the sequence {card(Sn(Γm;s,t))}n≥0 is given in (1).

In this paper we generalize these results by imposing that the second largest element of the
length m forbidden patterns occurs in one of the last p positions. Formally, let m and j be two
integers, 1 ≤ j < m, and define Σm,j ⊂ Sm by

Σm,j = {σ ∈ Sm | σ(1) = m and σ(m + 1 − j) = m − 1}.

For example, Σ4,1 = {4123,4213} and Σ4,2 = {4132,4231}.
Now, for 1 ≤ p < m define Σp

m ⊂ Sm by

Σp
m =

p
⋃

j=1

Σm,j,

and, for instance, Σ2
4 = Σ4,1 ∪ Σ4,2 = {4123,4213,4132,4231}.

Example 2.

• Σ1
2 = {21} and so card(Sn(Σ1

2)) = 1.

• Σ1
3 = {312} and so Sn(Σ1

3) is counted with the Catalan number.

• Σ2
3 = {312,321} and card(Sn(Σ2

3)) = 2n−1, see [1].

• Σ1
4 = {4123,4213} and Sn(Σ1

4) is counted by the Schröder number, see for instance [4, 7].
The sets Sn(Σ1

4) for n = 1, . . . , 4 are given in Figure 1.

• Σ2
4 = {4123,4213,4132,4231} and Sn(Σ2

4) is counted by the (n − 1)th central binomial
coefficient

(

2n−2
n−1

)

, see [4].
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2 Generating trees

A succession (or ECO) rule is a formal system consisting of a root e0 (or axiom) and a set of
productions of the form

(k) (e1(k))(e2(k)) . . . (ek(k)) (2)

where e0 and each ei(k), 1 ≤ i ≤ k, are integers. The right side of these productions are
sequences of parenthesed integers. A succession rule explains how an object of size n can be
uniquely expanded into several objects of size n + 1. Note that in productions above the size of
objects does not occur explicitly.

Now we explain the succession rule techniques in the context of pattern avoidance. The sites
of π ∈ Sn are the positions between two consecutive entries, before the first and after the last
entry; and they are numbered, from right to left, from 1 to n+1. For a permutation π ∈ Sn(T ),
with T a set of forbidden patterns, i is an active site if the permutation obtained from π by
inserting n + 1 into its ith site is a permutation in Sn+1(T ); we call such a permutation in
Sn+1(T ) a son of π. For any n > 1 and π ∈ Sn(T ), by erasing n in π one obtains a permutation
in Sn−1(T ); or equivalently, any permutation in Sn(T ) is obtained from a permutation in
Sn−1(T ) by inserting n in one of its active sites. We say that the active sites of a permutation
π ∈ Sn(T ) are right justified if the sites to the right of any active site are also active. See
Figure 1 for an example.

Define Θp
m to be the set of permutations which are length (m − 1) suffixes of permutations

in Σp
m. In other words, Θp

m is the set of permutations θ in Sm−1 with m− 1 ∈ {θ(m− p), θ(m−
p + 1), . . . , θ(m − 1)}. Permutations in Θp

m are critical in our construction of a generating tree
for Sn(Σp

m) since they are ‘precursors’ of patterns in Σp
m. Indeed, the insertion of n + 1 into a

site of π ∈ Sn(Σp
m) produces an occurrence of a pattern in Σp

m if and only if a pattern belonging
to Θp

m occurs in π on the right of this site. For short, in a permutation π, an occurrence of a
pattern in Θp

m will be called a Θ-pattern.

Lemma 1. Let m ≥ 3 and 1 ≤ p < m. The length one permutation 1 ∈ S1(Σ
p
m) has two active

sites and any π ∈ Sn(Σp
m) has its active sites right justified.

Proof. For m ≥ 3, it is clear that both permutations 12 and 21 belong to S2(Σ
p
m) and so

1 ∈ S1(Σ
p
m) has two active sites.

Now let us suppose that π ∈ Sn(Σp
m) has at least a non-active site, and let i be the rightmost

of them. That is, the site between the entries πn−i+1 and πn−i+2 is the rightmost non-active
site of π. It follows that the suffix πn−i+2πn−i+3 . . . πn contains a Θ-pattern, and so does any
longer suffix. Thus all the sites to the left of i are non-active.

Lemma 2. If π is a permutation in Sn(Σp
m) with k active sites and k < m − 1, then each

permutation obtained from π by inserting n + 1 in any active site of π yields a permutation (in
Sn+1(Σ

p
m)) with k + 1 active sites.

Proof. First remark that, in a permutation π ∈ Sn(Σp
m) with n ≥ m − 2, the rightmost m − 1

sites are active. Indeed the insertion of (n+1) into the (m−1)th (right to left) active site can not
produces a pattern in Σp

m. It results that if π ∈ Sn(Σp
m) has k active sites, with k < m−1, then

n = k − 1 < m − 2. Thus the insertion of n + 1 in any active site of π produces a permutation
with k + 1 = n + 2 active sites.
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Theorem 2. The succession rule for the set of permutations Sn(Σp
m) is:

root (2)

rules (k)  

{

(k + 1)k if k < m − 1,
(m − 1)p(m)(m + 1) . . . (k)(k + 1)m−p−1 if k ≥ m − 1.

Proof. When k < m − 1 the derivation (k) (k + 1)k follows from Lemma 2.
Let π ∈ Sn(Σp

m) be a permutation with k ≥ m − 1 active sites. Clearly, the length of π is at
least k − 1, and the length k − 1 suffix of π does not contain any Θ-pattern. For an active site
i ∈ {1, 2, . . . , k} let σ be the permutation obtained from π by inserting n + 1 in the ith (from
right to left) active site of π. We will distinguish three cases.
• If i ∈ {1, 2, . . . , p}, then the length m − 1 suffix of σ is a Θ-pattern and σ has m − 1 active
sites.
• If k > m− 1, then the set {p + 1, p + 2, . . . , p + k−m + 1} is not empty, and let i belong to it.
The length (m − p + i − 1) suffix of σ contains a Θ-pattern and no shorter suffix of σ contains
such a pattern. In this case σ has (m− p + i− 1) active sites. In particular, for i = p + 1, σ has
m active sites; for i = p + 2, σ has m + 1; . . . ; for i = p + k − m + 1, σ has k active sites.
• If i ∈ {p + k −m + 2, p + k −m + 3, . . . , k}, then the length k suffix of σ does not contain any
Θ-pattern and all the rightmost k + 1 sites of σ are active.

Combining these three cases we obtain the derivation (k) (m− 1)p(m)(m + 1) . . . (k)(k +
1)m−p−1 when k ≥ m − 1.

Remark 1. Let m ≥ 3 and p, 1 ≤ p < m. The number of active sites of the permutation
σ ∈ Sn+1(Σ

p
m) obtained from π ∈ Sn(Σp

m) by inserting n + 1 into its ith active site does not
depend on π but only on i and on the number k of active sites of π.

Example 3. The succession rules in Theorem 2 becomes:

• Dyck rules for (m, p) = (3, 1):

root (2)
(k)  (2)(3) . . . (k)(k + 1)

• Schröder rules for (m, p) = (4, 1):

root (2)
rules (2)  (3)(3)

(k)  (3)(4) . . . (k)(k + 1)(k + 1) if k ≥ 3

See Figure 1 for the generating tree induced by these rules.

• Grand Dyck rules for (m, p) = (4, 2):

root (2)
rules (2)  (3)(3)

(k)  (3)(3)(4) . . . (k)(k + 1) if k ≥ 3

• and for (m, p) = (5, 2):

root (2)
rules (2)  (3)(3)

(3)  (4)(4)(4)
(k)  (4)(4)(5) . . . (k)(k + 1)(k + 1) if k ≥ 4.
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.1.

.1.2.

1.2.3.

1 2.3.4.

1.2.4.3.

1.4.2.3.

.1.3.2.

1 3.2.4.

1.3.4.2.

.1.4.3.2.

.4.1.3.2.

.3.1.2.

3 1.2.4.

3.1.4.2.

.3.4.1.2.

.4.3.1.2.

.2.1.

2.1.3.

2 1.3.4.

2.1.4.3.

2.4.1.3.

.2.3.1.

2 3.1.4.

2.3.4.1.

.2.4.3.1.

.4.2.3.1.

.3.2.1.

3 2.1.4.

3.2.4.1.

.3.4.2.1.

.4.3.2.1.

Figure 1: The first levels of the generating tree induced by the Schröder rules corresponding to
(m, p) = (4, 1). Active sites are represented by dots.
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3 Production matrices

Any succession rule of the form given in (2) can be expressed as a root (labeled by ℓ1 in this
context) and a set of productions

{(ℓu) (ℓ1)
v(u,1)(ℓ2)

v(u,2)(ℓ3)
v(u,3) . . .}u≥1 (3)

where {ℓ1, ℓ2, . . .} is the set of admissible labels and for each u the ultimately zero integer
sequence {v(u, k)}k≥1 gives the repetition order.

The matrix

R = [v(i, j)]i,j≥1

defined in [3] is called the production matrix of the succession rule (3). For example, the pro-
duction matrix of the Dyck rule is











1 1 0 0 0 0 . . .

1 1 1 0 0 0 . . .

1 1 1 1 0 0 . . .
...

...
...

...
...

...











and that of Grand Dyck rule is











0 2 0 0 0 0 . . .

0 2 1 0 0 0 . . .

0 2 1 1 0 0 . . .
...

...
...

...
...

...











.

The integer sequence corresponding to a succession rule (or equivalently, to a production
matrix) is the sequence giving, for each n, the number of objects of size n produced by the
succession rule. Observe that, the objects of size n are exactly those at level n − 1 in the
generating tree, considering the root at level zero.

For a production matrix P we denote by fP the generating function of the integer sequence
associated with P . Let denote by u⊤ the row vector (1 0 0 . . . 0), and by e the column vector
(1 1 1 . . . 1)⊤.

Theorem 3 (Theorem 3.2 of [3]). Let a, b, c be three nonnegative integers, P and Q two pro-
duction matrices related by

P =

[

b a · u⊤

c · e Q

]

.

Then the associated generating functions are related by

fP (x) =
1 + axfQ(x)

1 − bx − acx2fQ(x)
.

In particular, this theorem gives the following corollary.
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Corollary 1 (Corollary 3.1 of [3]). Let a, b, c be three positive integers and P be an infinite
production matrix of the form

P =

[

b a · u⊤

c · e P

]

.

Then fP (x) satisfies the quadratic equation

acx2fP (x)2 − (1 − bx − ax)fP (x) + 1 = 0.

As a particular case (b = c = 1) of this corollary we obtain the following.

Corollary 2. Let a be an integer and R a production matrix of the form

R =















1 a 0 0 0 . . .

1 1 a 0 0 . . .

1 1 1 a 0 . . .

1 1 1 1 a . . .
...

...
...

...
...

. . .















.

Then

fR(x) =
Na(x)

2ax2
(4)

where
Na(x) = 1 − (a + 1)x −

√

1 + (a − 1)2x2 − 2(a + 1)x.

Proof. Applying Corollary 1, we obtain the following functional equation for fR(x):

ax2fR(x)2 − (1 − x − ax)fR(x) + 1 = 0.

Solving this equation leads to the desired expression.

Lemma 3. Let P be a production matrix of the form

P =















b a 0 0 0 . . .

b 1 a 0 0 . . .

b 1 1 a 0 . . .

b 1 1 1 a . . .
...

...
...

...
...

. . .















.

Then

fP (x) =
2x + Na(x)

x(2 − 2bx − bNa(x))
, (5)

where Na(x) is the same of the Corollary 2.

Proof. Applying Theorem 3, we obtain the following expression for fP (x):

fP (x) =
1 + axfR(x)

1 − bx − abx2fR(x)
,

where fR is the generating function found in Corollary 2. Simplifying this expression leads to
the desired formula.
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Lemma 4. Let P and Q be two production matrices, and

P =























0 2 0 ... 0 0 0 ...

0 0 3 ... 0 0 0 ...

.

.

.

0 0 0 ... m−4 0 0 ...

0 0 0 ... 0 m−3 0 ...

0 0 0 ... 0 0 m−2 ...

.

.

.

.

.

.

.

.

. ...
.

.

.

.

.

. Q























.

Then the generating function of the numerical sequence associated with P is

fP (x) =

m−4
∑

i=0

(i + 1)! · xi + (m − 2)! · xm−3 · fQ(x).

Proof. Theorem 3 gives as particular case (b = c = 0): if a is a nonnegative integer, P and M

two production matrices with

P =

[

0 a · u⊤

0 M

]

,

then
fP (x) = 1 + a · xfM(x).

Now the statement holds by deleting the first row and column in P and iteratively applying
the above relation.

Theorem 4. The generating function for the succession rule

root (2)

rules (k)  

{

(k + 1)k if k < m − 1
(m − 1)p(m)(m + 1) . . . (k)(k + 1)m−p−1 if k ≥ m − 1

is given by

Ψ(x) =

m−4
∑

i=0

(i + 1)! · xi + (m − 2)! · xm−3 · F (x),

where

F (x) =
2x + Nm−p−1(x)

x(2 − 2px − pNm−p−1(x))
.

and
Na(x) = 1 − (a + 1)x −

√

1 + (a − 1)2x2 − 2(a + 1)x.

Proof. The production matrix of the succession rule in Theorem 2 is
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Am,p =

































0 2 0 0 . . . 0 0 0 0 . . .

0 0 3 0 . . . 0 0 0 0 . . .

0 0 0 4 . . . 0 0 0 0 . . .
...

...
...

...
. . .

...
...

...
...

. . .

0 0 0 0 . . . m − 2 0 0 0 . . .

0 0 0 0 . . . p m − p − 1 0 0 . . .

0 0 0 0 . . . p 1 m − p − 1 0 . . .

0 0 0 0 . . . p 1 1 m − p − 1 . . .
...

...
...

...
. . .

...
...

...
...

. . .

































To determine an expression for the generating function of the numerical sequence associated
with Am,p we apply Lemma 4 with

Q =















p m − p − 1 0 0 0 . . .

p 1 m − p − 1 0 0 . . .

p 1 1 m − p − 1 0 . . .

p 1 1 1 m − p − 1 . . .
...

...
...

...
...

. . .















.

By Lemma 3, with a = m− p− 1 and b = p, the generating function F (x) of the production
matrix Q is

F (x) =
2x + Nm−p−1(x)

x(2 − 2px − pNm−p−1(x))

and the result immediately follows applying Lemma 4.

Since in all of the generating trees considered above the root (the length one permutation)
was considered to be at level zero, we have the following

Corollary 3. The generating function of the sequence {card(Sn(Σp
m))}n≥0 is x · Ψ(x).

Corollary 4. card(Sn(Σp
p+1)) =

{

n! if n < p − 1
(p − 1)! · pn−p+1 otherwise.

We end this section with an open problem. For 1 ≤ p < m define Γp
m ⊂ Sm by

Γp
m = {π ∈ Sm | m = π(m) and m − 1 ∈ {π(m − p), π(m − p + 1), . . . , π(m − 1)}}.

Clearly, card(Γp
m) = card(Σp

m) and Γp
m is still another generalisation of Γm, the set of patterns

considered in [2] and defined in the beginning of the present paper. There is no trivial bijection
between Sn(Σp

m) and Sn(Γp
m) and we have verified by computer, for several values of n, m and

p, and think that the following is true.

Conjecture 1. For any m and p, 1 ≤ p < m, Σp
m and Γp

m are Wilf equivalent, that is,
card(Sn(Σp

m)) = card(Sn(Γp
m)) for n ≥ 1.
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m\p 1 2 3 4

2 1 − − −
3 Catalan 2n−1 − −
4 Schröder

(

2n−2
n−1

)

2 · 3n−2 A025192 −
5 A054872 6 · 4n−3 A084509

Table 1: Several instances of the sequence {card(Sn(Σp
m))}n≥0.

4 The sequences {card(Sn(Σ
p
5))}n≥0 for 1 ≤ p ≤ 4

Here we give the first terms, the Sloane reference (if any) and the generating function corre-
sponding to the sequences {card(Sn(Σp

5))}n≥0 for 1 ≤ p ≤ 4.

• card(Sn(Σ1
5))

first values: 0, 1, 2, 6, 24, 114, 600, 3372, 19824, . . .

Sloane: A054872

generating function: x ·
(

2 − 2x −
√

1 − 8x + 4x2
)

• card(Sn(Σ2
5))

first values: 0, 1, 2, 6, 24, 108, 516, 2556, 12972 . . .

generating function: x ·
(

1 + 2x + 3x · 1−x−
√

1−6x+x2

x+
√

1−6x+x2

)

• card(Sn(Σ3
5))

first values: 0, 1, 2, 6, 24, 102, 444, 1956, . . .

generating function: x ·
(

1 + 2x + 6x · 1−
√

1−4x

−1+3
√

1−4x

)

• card(Sn(Σ4
5))

first values: 0, 1, 2, 6, 24, 96, 384, 1536, 6144, . . .

Sloane: A084509

generating function: x · 1−2x−2x2

1−4x
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